Intermediate water masses, a major supplier of oxygen for the eastern tropical Pacific ocean

Olaf Duteil (oduteil@geomar.de)(1), Ivy Frenger(1), Julia Getzlaff(1)
(1) GEOMAR, Kiel, Germany

Abstract
It is well known that Intermediate Water Masses (IWM) are sinking in high latitudes and ventilate
the lower thermocline (500 – 1500 m depth). We here highlight how the IWM oxygen content and
the IWM pathway along the Equatorial Intermediate Current System (EICS) towards the eastern
tropical Pacific ocean are essential for the supply of oxygen to the lower thermocline and the
Oxygen Minimum Zones (OMZs). To this end, we assess here a heterogeneous subset of ocean
models characterized by a horizontal resolution ranging from 0.1° to 2.8°. Subtropical oxygen
levels in the lower thermocline, i.e., IWM are statistically correlated with tropical oxygen levels and
OMZs. Sensitivity simulations suggest that the oxygen biases of the subtropical IWM oxygen levels
contribute to oxygen biases of the tropical thermocline: an increase of the IWM oxygen by 60
mmol.m\(^{-3}\) results in a 10 mmol.m\(^{-3}\) increase in the tropical ocean in a timescale of 50 years. In the
equatorial regions, the IWM recirculates into the Equatorial Intermediate Current System (EICS).
By comparing tracer and particle release simulations, we show that a developed EICS increases
eastern tropical ventilation by 30 %. Typical climate models lack in representing crucial aspects of
this supply: biases in IWM properties are prominent across climate models and the EICS is
basically absent in models with typical resolutions of ~1°. We emphasize that these biases need to
be reduced in global climate models to allow reliable projections of OMZs in a changing climate.

1. Introduction
Oxygen levels in the ocean are characterized by high values in the high latitudes and the subtropical
gyres, while concentrations decrease to close to zero in the tropical oceans in the Oxygen Minimum
Zones (OMZs). While OMZs are natural features, climate change is potentially responsible for their
expansion (Breitburg et al., 2018), leading to a reshaping of the ecosystems and a potential loss of
biodiversity. In order to perform robust projections there is a need to better understand the processes
at play that are responsible for the supply of oxygen to the OMZ. We focus here on the Pacific
ocean, where the largest OMZs are located (Karstensen et al., 2008; Paulmier and Ruiz-Pino. 2009)

Oxygen rich waters are supplied into the ocean by subduction processes (Karstensen et al., 2008).
Oxygen solubility increases with lower temperatures, thus waters formed in the Southern Ocean
and in the North Pacific are characterized by particularly high oxygen values. In particular, the
Antarctic Intermediate Water (AAIW) (Molinelli, 1981) ventilates large areas of the lower thermocline of the Pacific Ocean (Sloyan and Rintoul, 2001) and is characterized by oxygen values larger than 300 mmol.m\(^{-3}\) at subduction time (Russel and Dickson, 2003). The oxygenated core of the AAIW in the tropical Pacific is located at about 500-1200 m depth at 40°S (Russell and Dickson, 2003) and with this at a depth directly below the depth of the OMZs in the eastern Pacific; the Pacific AAIW mixes down to 2000 m depth with the Pacific Deep Water (PDW) as determined by the OMP (Optimum Multiparameter) analysis (Pardo et al., 2012; Carrasco et al., 2017). The oxygen rich (> 200 mmol.m\(^{-3}\) at 40°S) AAIW spreads from its formation side in the Southern Ocean to the subtropical regions; conversely the oxygen poor PDW (below 150 mmol.m\(^{-3}\)), extends till 3000m depth and recirculates poleward (Koshlyakov and Tarakanov, 2003). The northern part of the Pacific basin is characterized by the North Pacific Intermediate Water (NPIW) (Talley, 1993) confined to the northern Pacific conversely to the AAIW, which spreads far northward as its signature reaches 15°N (Qu and Lindstrom., 2004). AAIW, NPIW and the upper part of the PDW are oxygenated water masses occupying the lower thermocline between 500 and 1500 m depth. We will refer to these waters as Intermediate Water Masses (IWM) in the following.

In the subtropics, the IWM (more particularly the AAIW) circulates into the intermediate flow of the South Equatorial Current and the New Guinea Coastal Undercurrent (Qu and Lindstrom, 2004) where it retroflects in the zonal equatorial flows of the Southern Intermediate Countercurrent (SICC) and Northern Equatorial Intermediate Current (NEIC) within about ±2° off the equator (Zenk et al., 2005; Kawabe et al., 2010) (Fig 1). These currents are part of the Equatorial Intermediate Current System (EICS) constituted by a complex system of narrow jets extending below 500 m in the lower thermocline (Firing, 1987; Ascani et al., 2010; Marin et al. 2010; Cravatte et al., 2012, 2017; Menesguen et al., 2019). While the existence of this complex jet system has been shown to exist in particular using argo floats displacements (Cravatte et al., 2017) the spatial structure and variability of the jets are still largely unknown. In addition, there is little knowledge about their role in transporting properties such as oxygen.

The simulation of the supply of oxygen to the eastern tropical Pacific is a difficult task as it depends on the realistic simulation of the IWM properties (in particular the oxygen content) and the IWM pathway (through the EICS). It is known that current climate models, in particular CMIP5 (Coupled Model Intercomparison Project phase 5) models, have deficiencies in correctly representing the IWM, and in particular the AAIW. They generally display too shallow and thin IWM, with a limited equatorward extension compared to observations (Sloyan and Kamenkovich,
Discrepancies in the simulated properties of IWM compared to observations are due to a combination of many errors in the climate models, including simulation of wind and buoyancy forcing, inadequate representation of subgrid-scale mixing processes in the Southern Ocean, and midlatitude diapycnal mixing parameterizations (Sloyan and Kamakovich, 2007; Zhu et al., 2018).

In addition, the representation of the EICS is lacking in coarse resolution models (Dietze and Loepfien, 2013; Getzlaff and Dietze, 2013). Higher resolution (0.25°, 1/12°) configurations partly resolve the EICS but with a smaller amplitude than observed (Eden and Dengler, 2008; Ascani et al., 2015). The mechanisms forcing the EICS are complex and still under debate (see the review by Menesguen et al., 2019).

In this study we focus on the impact of IWM (and of the deficiencies in the representation of their properties and transport) on the oxygen content in the eastern tropical Pacific in a set of model simulations. Section 2 gives an overview of all models that we used as well as of the sensitivity simulations. Next, we assess to which extent the IWM modulate (or drive) the oxygen levels in the eastern tropical (20°S - 20°N) Pacific ocean in this set of models. The role of the IWM depends i) on the oxygen content of the IWM in the lower thermocline of the subtropical regions (section 3) and ii) on the zonal recirculation of the oxygen by the EICS toward the eastern part of the basin (section 4). We conclude in section 5.

2. Analyzed models and experiments

2.1 Mean state

We analyze the mean state of the oxygen fields, OMZ, EICS of the following model experiments (see Table 1), which previously have been used in recent studies focusing on the understanding of the tropical oxygen levels mean state or variability:

- a NEMO (Nucleus for European Modelling of the Ocean) configuration with a resolution of 2°, refined meridionally to 0.5° in the equatorial region (NEMO2). The circulation model is coupled to a simple NPZD (Nutrient Phytoplankton Zooplankton Detritus) biogeochemical model that comprises 6 compartments (e.g used in Duteil et al., 2018; Duteil, 2019). The simulation has been forced by climatological forcings based on the Coordinated Reference Experiments (CORE) v2 reanalysis (1948-2007) (Large and Yeager, 2009) and integrated for 1000 years.
- the UVIC (University of Victoria) model (e.g used in Getzlaff et al., 2016; Oschlies et al., 2017), an earth System Model (ESM) that has a horizontal resolution of 1.8° latitude x 3.6° longitude. The experiment has been integrated for 10000 years. The biogeochemical model is a NPZD-type model
of intermediate complexity that describes the full carbon cycle (see Keller Keller 2012 for a detailed description). This model is forced by monthly climatological NCAR/NCEP wind stress fields. The GFDL (Geophysical Fluid Dynamics Laboratory) CM2-0 suite (Delworth et al., 2012; Griffies et al., 2015, Dufour et al, 2015): the suite is based on the GFDL global climate model and includes a fully coupled atmosphere with a resolution of approximately 50 km. It consists of three configurations that differ in their ocean horizontal resolutions: GFDL1 with a nominal 1° resolution, GFDL025 with a nominal 0.25° and GFDL01 with a nominal 0.1° resolution (e.g used in Frenger et al., 2018 and Busecke et al., 2019 for studies on ocean oxygen). The climate models are forced with preindustrial atmospheric pCO2 concentrations. At simulation year 48, the simplified ocean biogeochemistry model miniBLING is coupled to the models, with three prognostic tracers, phosphate, dissolved inorganic carbon and oxygen (Galbraith et al., 2015). Due to the high resolution of GFDL01, the integration time is limited. We here analyze simulation years 186 to 190.

The heterogeneity of the configurations that we analyze permits to determine whether the simulated oxygen distributions of the models display systematic biases or are strongly configuration dependent (e.g dependent on resolution).

2.2 Sensitivity simulations

In order to disentangle the different processes at play we perform two different sets of sensitivity simulations with one of the models, NEMO. NEMO allows to test effects of increasing the ocean resolution and to integrate the model over a relatively long time span. All sensitivity experiments are integrated for more than 50 years (1948 to 2007) using the CORE (Coordinated Ocean-Ice Reference Experiments) v2 interannual (Large and Yeager, 2009) forcings. This time scale permits the recirculation from the interior subtropical regions to the tropical area (as suggested in the model study by SenGupta and England, 2007).

2.2.1 Oxygen restoring to observations in the subtropical regions

In the first set of experiments the focus is on the role of the lower thermocline oxygen content for the ventilation of the eastern equatorial Pacific. We use NEMO2, the oceanic component of the IPSL-CM5A (Mignot et al., 2013), that is part of CMIP5. NEMO2 shows mid-latitudes oxygen biases consistent with CMIP5 models. We compare three experiments:

- NEMO2-REF: the experiment is integrated from 1948 to 2007 starting from the spinup state described in 2.1.
- NEMO2-30DEG: the oxygen boundaries are restored to observed oxygen concentrations (WOA) at the boundaries 30°N and 30°S: the mid-latitude supply of oxygen by the IWM is therefore correctly represented.

- NEMO2-30DEG1500M: same as NEMO2-30DG; in addition oxygen is also restored at the depth interface of 1500m, mimicking a correct oxygen state of the deeper water masses (lower part of the AAIW, upper part of the PDW)

We focus with the above three experiments on the transport of IWM oxygen levels to the tropical ocean and the OMZs. The respiration rate (oxygen consumption) is identical in NEMO2-REF, NEMO2-30DEG and NEMO2-30DEG1500M in order to avoid compensating effects between supply and respiration that depends on biogeochemical parameterizations (e.g. Duteil et al., 2012). We aim to avoid such compensating effects to ease interpretation and be able to focus on the role of physical transport.

2.2.2 Conservative Tracer Release in oxygenated waters

In a second set of experiments, we performed tracer release experiments in a coarse 0.5° (NEMO05) and high resolution 0.1° (NEMO01) configurations of NEMO (Table 1) to examine the transport of oxygenated IWM from the subtropical regions into the oxygen deficient tropics. NEMO01 is a configuration based on NEMO05 and where a 0.1° two-ways nest has been embedded in the whole Pacific Ocean, from 49°S to 31°N (Czeschel et al, 2011). In these experiments, we initialized the regions with climatological (WOA) oxygen levels greater than 150 mmol.m\(^{-3}\) with a value of 1 (and 0 when oxygen is lower than 150 mmol.m\(^{-3}\)). In the model simulations, the tracer is subject to the same physical processes as other physical and biogeochemical tracers, i.e. advection and diffusion but it does not have any sources and sinks. The experiments have been integrated for 60 years (1948 – 2007) using realistic atmosphere forcing (COREv2). NEMO05 and NEMO01 display a similar upper ocean circulation (Fig 5) but NEMO05 does not simulate a developed EICS contrary to NEMO01.

In order to complement the tracer experiment we performed Lagrangian particle releases. Lagrangian particles allow to trace the pathways of water parcels due to the resolved currents, and to track the origin and fate of water parcels. They are not affected by subgrid scale mixing processes. The particles are advected offline with 5 daily means of the NEMO05 and NEMO01 currents. The NEMO01 circulation fields have been interpolated on the NEMO05 grid in order to allow a comparison of the large scale advective patterns between NEMO01 and NEMO05. We used...
the ARIANE tool (Blanke and Raynaud, 1997). A first particle release has been performed in the
eastern tropical OMZ at 100°W in the tropical region between 5°S - 5°N, a second release has been
performed in the western part of the basin at 160°E. The particles have been released in the lower
thermocline at 1000 m and integrated backward in time from 2007 to 1948 in order to determine
their pathways and their location of origin. We released 120 particles every 5 days during the last
year of the experiment, for a total of 8760 particles.

3. Intermediate water properties and oxygen content

3.1. IWM Oxygen levels in models

The IWM subducted in mid/high latitudes are highly oxygenated waters. As part of the deficient
representation of IWM, the subducted “oxygen tongue” (oxygen values up to 240 mmol.m$^{-3}$) is not
reproduced in most of the models part of CMIP5 (Fig 8 from Cabre et al., 2015, Fig 4 from Takano
et al., 2018) and in the models analyzed here (Fig 2a), with biases of about 20-60 mmol.m$^{-3}$
(NEMO2, GFDL1, GFDL025, GFDL01). UVIC, a coarse resolution model, shows oxygenated
waters in the lower thermocline at mid latitudes (30°S-50°S); the oxygenation however arises due to
a too large vertical diffusion from the mixed layer rather than by an accurate representation of the
water masses. GFDL01, even though still biased low, presents larger oxygen values than the coarser
resolution models GFDL1, GFDL025 and NEMO2. A possible explanation is a better
representation of the water masses and in particular the AAIW in eddy-resolving models (Lackhar
et al., 2009). The IWM oxygen maximum is apparent at 30°S throughout the lower thermocline in
observations (Fig 2b), consistent with the circulation of IWM with the gyre from the mid/high
latitude formation regions towards the northwest in subtropical latitudes, and followed by a
deflection of the waters in the tropics towards the eastern basin.

Consistent with the low oxygen bias of models at subtropical latitudes (Fig 2b), models also feature
a bias in the tropical ocean (20°S-20°N) by 20 – 50 mmol.m$^{-3}$ (Fig 2a, Fig 2c) at intermediate depths
in the eastern part of the basin (similarly to CMIP5 models, as shown by Cabre et al., 2015). The
basin zonal average of the mean oxygen level in the lower thermocline (layer 500 - 1500 m) at 30°S
and in the eastern part of the basin (average 20°S – 20°N, 160°W-coast; 500-1500 m) are positively
correlated (Pearson correlation coefficient $R=0.73$) (Fig 2d), suggesting a large role of the IWM in
controlling the oxygen levels in the tropical oceans.

The models presenting the poorest oxygenated water at 30°S display the largest volume of OMZs
(GFDL025 and GFDL1), though the negative correlation (Pearson correlation coefficient $R=-0.52$)
is less pronounced between the volume of the OMZs and the mean oxygen levels in the layer 500 - 1500 m at 30°S (Fig 2e). Reasons of this weaker correlation are due to the OMZs being a result of several processes next to oxygen supply by IWM, e.g. vertical mixing with other water masses (Duteil et al., 2011), isopycnal mixing in the upper thermocline (Gnanadesikan et al., 2013; Bahl et al., 2019), supply by the upper thermocline circulation (Shigemitsu et al., 2017; Busecke et al., 2019). A correlation, even weak, suggests a major role of the IWM in regulating the OMZ volume.

In order to better understand the role of IWM entering the subtropical domain from higher latitudes for the oxygen levels in the eastern tropical Pacific Ocean, we perform sensitivity experiments (see 2.2.1) in the following.

3.2 Sensitivity of tropical IWM oxygen to subtropical and deep oxygen levels

3.2.1 Oxygen levels in the lower thermocline

The difference of the experiments NEMO2-30DEG – NEMO2-REF (average 1997-2007) allows to quantify the effect of model biases of IWM at mid latitudes (30°N/30°S). As we restore oxygen to observed levels at 30°S/°N (see 2.2.1), the difference shows a large anomaly in oxygen levels at 30°S (more than 50 mmol.m\(^{-3}\)) at lower thermocline level (500 – 1500 m) corresponding to the missing deep oxygen maximum (Fig 3). The northern negative anomaly results from a deficient representation of the north Pacific OMZ, i.e., modeled oxygen is too high for NPIW. The northern low and southern high anomalies spread towards the tropics at intermediate depth. A fraction of the positive oxygen anomaly recirculates at upper thermocline level due to a combination of upwelling and zonal advection by the tropical current system (for instance the EUC at thermocline level is a major supplier of oxygen as shown in observations by Stramma et al., 2010 and in ocean models by Duteil et al., 2014, Busecke et al., 2019).

The difference NEMO2-30DEG1500M – NEMO2-30DEG (Fig 3f-h) shows a deep positive anomaly in oxygen, as oxygen levels are lower than in observations by 30-40 mmol.m\(^{-3}\) in the eastern tropical regions. This anomaly is partially transported into the lower thermocline (500 - 1500 m). It shows that a proper representation of the deep oxygen level (> 1500 m) is important for a realistic representation of the lower thermocline and OMZs. Causes of the oxygen bias of the deeper water masses are beyond the scope of this study but may be associated with regional (tropical) issues, such as an improper parameterization of respiration (e.g. a too deep remineralisation) (Kriest et al., 2010), or a misrepresentation of deeper water masses.
3.2.2 Oxygen budget and processes

To assess the processes that drive the oxygen content of the (sub)tropical lower thermocline, we analyzed the oxygen budget in NEMO2-REF and NEMO2-30DEG. The budget is calculated as an average between 500 and 1500m and shown in Fig.4. In NEMO2-REF, the physical oxygen supply is balanced by the respiration. The oxygen supply in the model is divided into advection, i.e., oxygen transport associated with volume transport, and isopycnal diffusion, i.e., subgrid scale mixing processes that homogenize oxygen gradients. Diapycnal diffusion is comparatively small and can be neglected. The lower branches of the subtropical gyres transport the oxygen from the eastern to the western part of the basin (Fig 4a,b). Downwellings from the oxygen-rich upper layer supply the interior of the subtropical gyres (Fig 4c). At the equator, the EICS transport westward oxygen-poor water originating in the eastern side of the basin (Fig 4a). Concomitantly, the meridional advection term transports oxygen originating from the subtropics in the tropical regions (Fig 4b), which is upwelled (Fig 4c). Isopycnal diffusion transfers oxygen from the oxygen-rich gyres to the poor oxygenated regions (Fig 4d).

The anomalies generated at 30°S and 30°N by the restoring experiment generate a disbalance between respiration (which remains identical in NEMO2-REF and NEMO2-30DEG) and supply. This disbalance is most apparent in the tropics by an increase (south) or decrease (north) of isopycnal diffusion (Fig 4g, Fig 3h). Changes in the advective terms can be found along the equator: as the vertical gradient of oxygen decrease (the intermediate ocean being more oxygenated), the vertical supply from the upper ocean decreases in the south (increases in the north) subtropical gyre and decreases at the equator (Fig 4g). The meridional oxygen gradient between the southern subtropical gyre and the equator strengthens, and so the meridional transport from the subtropics to the equator, partly by the western boundary currents (Fig 4f). The changes in zonal transport are comparatively small (Fig 4e). The total advective term does not show significant change however (Fig 4g).

In the experiment NEMO2-30DEG1500, in complement to the isopycnal propagation of the subtropical anomaly, the deep (> 1500 m) oxygen anomaly is upwelled in the eastern equatorial (500 – 1500 m) part of the basin (see Fig 4i) showing a large increase in advective terms, mostly due to an increase in vertical advection), consistent with the analysis by Duteil (2019) who showed that vertical advection is the dominant process to supply oxygen from the lower to the upper thermocline in the equatorial eastern Pacific Ocean in a similar NEMO2 configuration.
This simple set of experiment shows that in climate models oxygen in the lower thermocline (500 – 1500 m) ocean are partially controlled by properties of IWM that enter the tropics from higher latitudes. This presumably applies to other (biogeochemical) tracers. IWM oxygen propagates equatorward mostly by small scale isopycnal processes and the western boundary currents. Further, upwelling in the tropics from deeper ocean layers (Pacific Deep Water, partially mixed with the lower IWM) play an important role. Our budget analysis highlighted the importance of advective processes in the equatorial region in the lower thermocline which we will examine more closely in the following.

4. Equatorial intermediate current system and oxygen transport

4.1 Structure of the currents in the upper 2000 m in observations and models.

The current structure of the models analyzed in this study (see section 2.1, Table 1) is shown in Fig. 5. In the upper layer, the broad westward drifting South and North Equatorial Currents (SEC, NEC) characterize the equatorial side of subtropical gyres. In the thermocline, the eastward flowing equatorial undercurrent (EUC), flanked by the westward flowing south and north counter currents are present in all models. This upper current structure is well reproduced (i.e the spatial structure and intensity are consistent with observations) across the different models (see 2.1 “Model analyzed”) compared to observations. Previous studies already discussed the upper thermocline current structure in the GFDL models suite (Busecke et al., 2019), NEMO (e.g Izumo, 2005, Lübbecke et al., 2008), UVIC (Loeptien and Dietze, 2013); the upper thermocline will not be further discussed in this study.

At intermediate depth, in the observations, a relatively strong (about 0.1 ms⁻¹) westward flowing Equatorial Intermediate Current (EIC) is present below the EUC at about 400-600 m depth (Marin et al., 2010). A complex structure of narrow and vertically alternating jets every 200 m, so-called Equatorial Deep Jets (EDJ), extends below the EIC till 2000 m (Firing, 1987; Cravatte et al., 2012). Laterally to the EIC, in the upper thermocline, the Low Latitude Subsurface Countercurrents (LLSC) are observed. They include the North and South Subsurface Counter Currents (NSCC and SSCC), located around 5°N/5°S, and a series of jets between 5°N/S and 15°N/S (in particular the Tschuya jets in the southern hemisphere, described by Rowe et al., 2000). Below the LLSCs, the Low Latitude Intermediate Currents (LLICs) include the a series of westward and eastward zonal jets (500–1500-m depth range) alternating meridionally from 3°S to 3°N; the North and South Intermediate Countercurrents (NICC and SICC) flow eastward at 1.5°–2° on both flanks of the lower EIC. The North and South Equatorial Intermediate Currents (NEIC and SEIC) flow westward
at about 3° (Firing, 1987). A detailed schematic view of the tropical intermediate circulation is shown in a recent review by Menesguen et al. (2019) and in Fig 1.

In coarse resolution models, the intermediate current system is not developed and sluggish (even missing in UVIC and GFDL1). NEMO2 and NEMO05 display a “primitive” EICS as the LLSCs are not represented. High resolution models (GFDL025, GFDL01, NEMO01) display a more realistic picture, even if the mean velocity is still weaker than in observations (smaller than 5 cm s⁻¹), where it reaches more than 10 cm s⁻¹ at 1000 m (Ascani et al., 2010; Cravatte et al., 2017). An interesting feature is that the jets are broader and faster in NEMO01 than in GFDL01. Possible causes include a different wind forcing, mixing strength or topographic features as all these processes play a role in forcing the intermediate jets (see the review by Menesguen et al., 2019).

The intermediate currents are less consistent vertically in NEMO01 than in GFDL01, due to their large temporal variability in NEMO01. A strong seasonal and interannual variability of the EICS has been observed that display varying amplitudes and somewhat positions of the main currents/jets (Firing, 1998; Gouriou et al., 2006; Cravatte et al., 2017). A clear observational picture of the EICS variability is however not yet available. Outside the tropics (in particular south of 15°S), the interior velocity pattern is similar in coarse and high resolution models, suggesting a similar equatorward current transport at intermediate depth in the subtropics, in for instance NEMO05 and NEMO01.

4.2 Transport by the EICS

4.2.1 Tracer spreading towards the eastern tropical Pacific

We released a conservative tracer in the subtropical domain in well oxygenated waters (see 2.2.2) in a coarse (NEMO05) and a high resolution configuration (NEMO01). The tracer does not have sources or sinks and is advected and mixed as any other model tracer and allows to assess the spreading of tracer (such as oxygen) from oxygenated waters into the oxygen deficient eastern tropical Pacific.

The ventilation by the oxygen rich waters, and in particular the IWM, is illustrated by the tropical tracer concentration after 50 years (Fig 6a-c) of integration (mean 2002-2007). Concentrations decrease from the release location to the northern part of the basin, where the lowest values (below 0.1) are located in NEMO05 and NEMO01. The 0.1 isoline is however located close to the equator in NEMO05 while it is found around 7°N in NEMO01. This feature is associated with a pronounced tongue of high tracer concentration (> 0.2) between 5°N and 5°S in NEMO01. Such a tongue is
The preferential pathways of transport are highlighted by the determination of the transit time it takes for the tracer to spread from the oxygen rich regions to the tropical regions. We define a threshold called t10% when the tracer reaches a concentration of 0.1 (Fig 6d-f) (similar to the approach of SenGupta and England, 2007). t10% highlights a faster ventilation of the equatorial regions in NEMO01 compared to NEMO05, as t10% displays maximum value of 10 (western part) to 30 years (eastern part) between 5°N/5°S in NEMO01 compared to 30 years to more than 50 years in NEMO05. The southern “shadow zone” is well individualized in NEMO01 compared to NEMO05 as the oxygen levels are high in the equator in NEMO01, suggesting a strong transport by the EICS. While t10% increases linearly at intermediate depth at 100°W in NEMO05 from 20°S to the equator, suggesting a slow isopycnal propagation (consistent with the experiments performed using NEMO2 in part 3.2), the tracer accumulation is faster in the equatorial regions than in the mid-latitudes in NEMO01, suggesting a large role of advective transport, faster than a transport by diffusive processes.

4.2.2 Equatorial lower thermocline water mass origin

Lagrangian Particles (see 2.2.3) allow us to understand the origin of the waters in the lower thermocline. They also allow to disentangle the transport of the resolved currents of the EICS (advection) from subgrid scale mixing processes, i.e. to assess the processes responsible for the equatorial ventilation. Two releases have been performed in the eastern and western part of the basin in order to assess the equatorial circulation in NEMO05 and NEMO01.

The particles of the first release in the eastern tropical Pacific (100°W, at 1000 m depth where the EICS are located) origin from the intermediate eastern tropical pacific (IETP) ocean (160°W – coast / 10°N-10°S / 200 – 2000 m) close to the region of release, in 60 % of the cases in NEMO05 and 50 % of the cases in NEMO01, at a time scale of 50 years (Fig 7a-c and 8a). In NEMO05, after 50 years, the particles originating outside the IETP come either from the upper (0 – 200 m) ocean (5 %), deep (> 2000 m) ocean (1%), higher (> 10°) latitudes (23 %), western (west of 160°W) part of the basin (21 %) (Fig 8c). The largest difference between NEMO05 and NEMO01 is the much larger amount of particles originating from the deep ocean in NEMO01 (8 % in NEMO01), suggesting the presence of vertical recirculation cells at intermediate depths. The advection processes are also considerably faster in NEMO01, in particular the zonal advective ones. The
relative difference between NEMO05 and NEMO1 is particularly strong 15 years after the release (approximately corresponding to the t10% at 1000 m at the equator in NEMO01), as already 10 % of the particles originate outside the IETP, in regions where the oxygen levels are high, in NEMO01 while this fraction is close to 0 in NEMO05.

The particles of the second release (160°E, 1000 m depth) are originally located in the intermediate western tropical pacific Ocean (IWTP) (160°W – coast / 10°N-10°S / 200 – 2000 m) (Fig 7e-f). After 50 years, all the particles originate outside of this box in NEMO01 (Fig 8b) (50 % originate in the eastern basin, 23 % in the deep ocean, 24 % outside the equatorial band, 3 % in the upper 200 m) (Fig 8d) while only 70 % of the particles originate outside the IWTP in NEMO05 (39 % in the eastern basin, 27 % outside the equatorial band, 2 % in the deep ocean and 2 % in the upper ocean).

The Lagrangian particle results point to a generally stronger ventilation at intermediate depth in NEMO01 due to the EICS, which reinforce the connection between western / eastern part of the basin and thermocline / deep ocean

4.3 Equatorial oxygen levels in models

Our analyses above permit to better understand the distribution of the oxygen levels at the equator in a suite of models characterized by an increasing resolution, such as the GFDL model suite. The striking difference between GFDL01 and GFDL025 / GFDL1 are the high oxygen levels in the eastern part of the ocean below 1000 m in GFDL01 compared to GFDL025/GFDL1 (Fig 2). The oxygen levels are also more homogeneous zonally in GFDL01, with a weaker east/west gradient, consistent with the tracer experiment that we performed in 4.2. The oxygen distribution fits with the mean kinetic energy of the intermediate currents below 1000 m (Fig 9a), especially in the eastern part of the basin (Fig 9b). Resolving the EICS results in similar results as what Getzlaff and Dietze (2013) achieve with a simple parameterization of the EICS (Fig 9). To compensate for the “missing” EICS in coarse resolution models, they enhanced anisotropically the lateral diffusivity in the equatorial region. Implementing this approach tends to homogenize oxygen levels zonally, with an increase of the mean levels by 30-50 mmol.m\(^{-3}\) in the eastern basin and a decrease of oxygen concentrations in the western basin.

A possibly not intuitive feature is that the oxygen levels are relatively similar in GFDL025 and GFDL1, while the current system is relatively similar in GFDL025 and GFDL01 (see Fig 5 and Fig 9). An explanation lies in the relatively small net balance between large fluxes of respiration and
oxygen supply (Duteil et al., 2014). If the supply is slightly higher compared to the consumption by respiration, it will lead to an increase of oxygen concentration. If it is slightly lower, the oxygen levels will decrease. A small difference in supply (e.g. slightly weaker currents) may therefore lead to a large difference in oxygen levels when integrated over decades. For this reason, the impact of the EICS is more visible below 1000 m as the respiration decreases following a power-law with depth (Martin et al., 1987) and is therefore easier to offset even by a moderate oxygen supply.

5. Summary and conclusions

Intermediate water masses (IWM) are subducted in the Southern Ocean and transported equatorward to the tropics by isopycnal processes (Sloyan and Kamenkovich, 2007; Sallee et al., 2013; Meijers, 2014). At lower latitudes they recirculate into the lower thermocline of the tropical regions at 500 - 1500 m and into the EICS (Zenk et al., 2005; Marin et al., 2010; Cravatte et al., 2012; 2017; Ascani et al., 2015; Menesguen et al., 2019) (see schema Fig 1). We show here that the representation of this ventilation pathway is important to take into account when assessing tropical oxygen levels and the extent of the OMZ in coupled biogeochemical circulation or climate models. Particularly, we highlight two critical, yet typical, biases that hamper the correct representation of the tropical oxygen levels.

5.1 Subducted IMW properties and tropical oxygen

First, the current generation of climate models, such as the CMIP5 models, show large deficiencies in simulating IMW. Along with an unrealistic representation of IMW volume and properties when the waters enter the subtropics, the models also lack the observed prominent oxygen maximum associated with IMW. Restoring oxygen levels to observed concentrations at 30°S/30°N and at 1500 m depth in a coarse resolution model, comparable to CMIP5 climate models in terms of resolution and oxygen bias, shows a significant impact on the lower thermocline (500 – 1500 m) oxygen levels: a positive anomaly of 60 mmol.m⁻³ translates into an oxygen increase by 10 mmol-m⁻³ in tropical regions after 50 years of integration.

The equatorward transport of the anomaly in the subtropics is mostly due to isopycnal subgrid scale mixing processes as shown by the NEMO2 budget analysis. While the models with differing ocean resolutions may differ in their transport of IWM between the subtropical regions and the tropics, it nevertheless suggests that mesoscale activity in higher resolution models is important to spread IWM (e.g. Xu et al., 2016). This possibly includes subsurface eddies that show a signature well into the IWM depth range (Frenger et al., 2018, see their Fig 2).
Second, the Equatorial Intermediate Current System (EICS) is not represented in coarse resolution models and only poorly represented in high resolution ocean circulation models (0.25° and 0.1°), as its strength remains too weak by a factor of two (consistent with previous studies, e.g. Ascani et al., 2015). The EICS transports the IWM that occupies the lower thermocline (500 – 1500 m depth) and the recirculation of the IWM in the tropical ocean, as suggested by the observational study of Zenk et al. (2005), and shown in our study.

We investigated the impact of the EICS on the oxygen supply with tracer release experiments: the concentration of a conservative tracer that originates from the subtropical ocean, is, after 50 years, 30% higher in the eastern equatorial (5°N-5S) Pacific in an ocean model with 0.1° resolution, compared to an ocean model with 0.5° resolution. As the oxygen gradient along the equator is similar to the gradient of the conservative tracer, we assume a similar enhancement of oxygen supply by 30% in the eastern equatorial Pacific at the same time scale. This means, if we account for oxygen consumption due to respiration (about 1 mmol.m⁻³.yr⁻¹ between 5°N-5°S, see section 3.2), that the better resolved EICS in the higher resolution ocean leads roughly to higher intermediate oxygen levels of 15 - 30 mmol.m⁻³ compared to the lower resolution ocean experiment in a timescale of 50 years. Consistently, 0.1°-ocean GFDL01 model displays oxygen concentrations larger by about 30 mmol.m⁻³ in the eastern equatorial lower thermocline (500-1500 m) compared to the 1°-ocean GFDL1 configuration (with higher subtropical oxygen concentrations of IWM of 15 mmol.m⁻³ in GFDL01 at 30°S).

We would like to highlight two potential implications of our finding of the important role of the EICS for the Pacific eastern tropical oxygen supply: i) First, we have shown that the intermediate current system EICS is important for the connection between the western and eastern Pacific Ocean at a decadal / multidecadal time scale. This suggests that the EICS modulates the mean state and the variability of the tropical oxygen in the lower thermocline, and subsequently the whole water column by upwelling of deep waters. ii) Second, we have found an enhancement of the connections between equatorial deep ocean (> 2000 m) and lower thermocline in the high resolution model compared to the lower resolution model. This result is consistent with the studies of Brandt et al. (2011, 2012), who suggested, based on observational data and on an idealized model, that Equatorial Deep Jets, part of the EICS (see Fig 1b), propagate their energy upward and impact the upper ocean properties of the ocean, including their oxygen content. Taken this into account, we
hypothesize that the Pacific Deep Water has a larger role than previously thought in modulating the intermediate and upper ocean properties.

A pragmatic approach to account for the missing EICS is to increase diffusion anisotropically, with increased zonal mixing in the tropics (Getzlaff and Dietze, 2013). This parameterization mimics a more vigorous EICS and improves the simulated shape of the OMZ in climate models. However, the prominent bias of IMW in climate models, and therefore of the water masses entering the EICS is not accounted for with this parameterization. Furthermore such a parameterization improves the mean state but does not reproduce the variability of the EICS.

5.3 Implication for biogeochemical cycles

The IWM are important supplier of oxygen to the tropical oceans, but also of nutrients (Palter et al., 2010) as well as anthropogenic carbon (e.g. Kathiwala et al., 2012), which accumulates in mode and intermediate waters of the Southern Ocean (Sabine et al., 2004; Resplandy et al., 2013). The mechanisms that we discussed here may therefore play a role in ocean carbon climate feedbacks on time scales of decades to a century.

Finally, this study suggests that changes of the properties of the IWM may contribute to the still partly unexplained deoxygenation of 5 mmol.m$^{-3}$/decade occurring in the lower thermocline of the equatorial eastern Pacific Ocean (Schmidtko et al., 2017; Oschlies et al., 2018). In addition to an oxygen decrease in tropical regions, Schmidtko et al. (2017) showed a decrease of oxygen levels by 2-5 mmol.m$^{-3}$ in the regions of formations of AAIW. Based on repeated cruise observations, Panassa et al. (2018) highlighted an increase of the apparent oxygen utilization in the core of the AAIW, related to a 5 % increase in nutrient concentrations from 1990 to 2014. The transport of this modified AAIW, poorer in oxygen and richer in nutrients, toward the low latitudes both by small scale processes (section 3) and at the equator by the EICS (section 4), may explain a significant part of the occurring deoxygenation in the equatorial ocean. In complement to changes in the AAIW properties, little is known about the variability and long term trend of the strength of the EICS, an oceanic “bridge” between the western and the eastern part of the basin. A possible way forward could be to perform idealized model experiments in high resolution configurations, aiming to assess both the effect of the observed change in the AAIW properties and of a potential change of EICS strength on oxygen levels.
Data and code availability
The code for the Nucleus for European Modeling of the Ocean (NEMO) is available at: https://www.nemo-ocean.eu/. The code for the University of Victoria (UVIC) model is available at: http://terra.seos.uvic.ca/model/. The Lagrangian particles ARIANE code is available at http://stockage.univ-brest.fr/~grima/Ariane/. The Coordinated Ocean-ice Reference Experiments (COREv2) dataset is available at: https://data1.gfdl.noaa.gov/nomads/forms/core/COREv2.html.

The experiments data is available on request.

Authors contributions
OD conceived the study, performed the NEMO model and ARIANE experiments and analyzed the data. IF preprocessed and helped to analyze the GFDL data. JG preprocessed and helped to analyze the UVIC data. All authors discussed the results and wrote the manuscript.

Competing interest
The authors declare that they have no conflict of interest.

Acknowledgments
This work is a contribution of the SFB754 “Climate-Biogeochemistry Interactions in the Tropical Ocean”, supported by the Deutsche Forschungsgemeinschaft (DFG). The NEMO simulations were performed at the North German Supercomputing Alliance (HLRN). We would like to thank Markus Scheinert (research unit “Ocean Dynamics”, GEOMAR) for his technical support in compiling the NEMO code and for providing the high resolution NEMO input files. We would like to thank GFDL for producing the CM2-0 suite that involved a substantial commitment of computational resources and data storage.
References

Table 1:

<table>
<thead>
<tr>
<th>Model</th>
<th>Resolution</th>
<th>Atmosphere</th>
<th>BGC</th>
<th>Model Reference (circulation)</th>
<th>Model Reference (BGC)</th>
</tr>
</thead>
<tbody>
<tr>
<td>UVIC</td>
<td>2.8°</td>
<td>Coupled (temperature, humidity) Forced (NCEP/NCA R wind stress)</td>
<td>UVIC-BGC</td>
<td>Weaver et al., 2001</td>
<td>Keller et al., 2012</td>
</tr>
<tr>
<td>NEMO2</td>
<td>2° (0.5 eq)</td>
<td>Forced COREv2 “normal year”</td>
<td>NPZD-O2</td>
<td>Madec et al., 2017</td>
<td>Kriest et al, 2010 Duteil et al., 2014</td>
</tr>
<tr>
<td>GFDL1</td>
<td>1°</td>
<td>Coupled (~50 km)</td>
<td>miniBL ING</td>
<td>Delworth et al, 2012, Griffies et al, 2015</td>
<td>Galbraith et al., 2015, Dufour et al, 2015</td>
</tr>
<tr>
<td>GFDL025</td>
<td>0.25°</td>
<td>Coupled (~50 km)</td>
<td>miniBL ING</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GFDL01</td>
<td>0.1°</td>
<td>Coupled (~50 km)</td>
<td>miniBL ING</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Sensitivity experiments

<table>
<thead>
<tr>
<th>Model</th>
<th>Resolution</th>
<th>Atmosphere</th>
<th>BGC</th>
<th>Experiments</th>
</tr>
</thead>
<tbody>
<tr>
<td>NEMO2</td>
<td>2° (0.5 eq)</td>
<td>Forced COREv2 1948-2007</td>
<td>NPZD-O2</td>
<td>REF: control experiment 30N30S: O2 restoring to WOA at 30°N/30°S 30N30S1500M: O2 restoring to WOA at 30°N/30°S/1500m</td>
</tr>
<tr>
<td>NEMO05</td>
<td>0.5°</td>
<td>Forced COREv2 1948-2007</td>
<td>Tracer release</td>
<td>Tracer initialized to 1 (O2 WOA > 150 mmol.m⁻³) or 0 (O2 WOA < 150 mmol.m⁻³)</td>
</tr>
<tr>
<td>NEMO01</td>
<td>0.1°</td>
<td>Forced COREv2 1948-2007</td>
<td>Tracer release</td>
<td></td>
</tr>
</tbody>
</table>
Figure 1: a- schema summarizing the intermediate water masses (IWM) pathway from the subtropics into the equatorial regions. EICS : Equatorial Intermediate Current System. SEC : South Equatorial Current. Dashed line : isopycnal diffusive processes. Oxygen levels (mmol.m$^{-3}$) in the lower thermocline (mean 500-1500m) are represented in color. b - schema (adapted from Menesguen et al., 2019) illustrating the complexity of the EICS, extending below the thermocline till more than 2000 m depth (see section 4.1 for a detailed description). Oxygen levels (mean 500 – 1500m) at 160°W are represented in color (mmol.m$^{-3}$).
Figure 2: a- oxygen levels (mmol.m\(^{-3}\)) in observations (World Ocean Atlas - WOA) (mean 500 – 1500 m) and models (UVIC, NEMO2, GFDL1, GFDL025, GFDL01). Contours correspond to WOA values. b: average “30°S” (120°E-65°W, 30°S) c: average “tropics” (160°W-coast, 20°N-20°S). d: average “30°S” vs “tropics”. e: average “30°S” vs volume of tropical suboxic ocean (oxygen lower than 20 mmol.m\(^{-3}\)) regions (1e15m\(^3\)). UVIC : black, NEMO2 : cyan, GFDL1 : red, GFDL025, green; GFDL01 : blue, WOA: star.
Figure 3: a- Oxygen (mmol.m$^{-3}$) in the experiments NEMO2-REF (color) and World Ocean Atlas (contour) (average 500-1500 m). b- Oxygen (mmol.m$^{-3}$) difference (average 500 - 1500 m) between the experiments NEMO2-30S minus NEMO2-REF and c- NEMO2-30S1500M minus NEMO2-REF (contour NEMO2-REF). d- Oxygen (mmol.m$^{-3}$) in the experiments NEMO2-REF (color) and World Ocean Atlas (contour) (100°W). e- Oxygen (mmol.m$^{-3}$) difference (100°W) between the experiments NEMO2-30S minus NEMO2-REF and f- NEMO2-30S1500M minus NEMO2-REF (contour NEMO2-REF). g-i : basin zonal average (average 500 - 1500 m) of the oxygen total supply (bold) (mmol.m$^{-3}$,year$^{-1}$), advective processes (blue) and isopycnal diffusion (red) in g - NEMO2-REF, h- NEMO2-30DEG, i-NEMO2-30DEG1500M. The dashed line in is the oxygen total supply in NEMO2-REF.
Figure 4: Oxygen supply processes (mmol.m\(^{-3}\).year\(^{-1}\) – average 500 - 1500m) in NEMO2-REF: a- zonal advection, b- meridional advection, c- vertical advection, d- isopycnal diffusion. The meridional and zonal currents are displayed as vectors in a,b and the vertical current as contour in c. Oxygen levels (mmol-m\(^{-3}\)) are displayed in contour. Difference in oxygen supply processes (mmol.m\(^{-3}\).year\(^{-1}\) – average 500-1500m) between NEMO2-30DEG and NEMO2-REF: e- zonal advection, f – meridional advection, g- vertical advection, h- isopycnal diffusion. The NEMO2-30DEG – NEMO2-REF oxygen anomaly (mmol.m\(^{-3}\)) is displayed in contour.
Figure 5: mean currents velocity (ms$^{-1}$) at a- 1000 m depth b- 100°W in UVIC, NEMO2, NEMO05, GFDL025, GFDL01, NEMO01. The mean oxygen levels (mmol.m$^{-3}$) (when coupled circulation-biogeochemical experiments have been performed – see Table 1) are displayed in contour.
Figure 6: a-c: tracer concentration (arbitrary unit) after 60 years integration in NEMO05 (left) and NEMO01 (right). a: average 500-1500m, b: section 100°W, c: equatorial section. d-f: Time (years) at which the released tracer reaches the concentration 0.1 (t10%) in NEMO05 and NEMO01. d: average 500-1500m, e: section 100°W, f: equatorial section. In all the subpanels, the WOA oxygen levels are displayed in contour. The red contour is the WOA 150 mmol.m$^{-3}$ oxygen isoline, used to initialize the tracer level.
Figure 7: Density (number of particles in a 1°x1°x100m depth box) distribution of the location of released Lagrangian particles (15 years backward integration starting from the final experiment state) in NEMO05 (left) and NEMO01 (right). The release location is identified in bold and is located at 100°W/5°N-5°S/1000 m depth. a- vertical integrated density; b- zonal integrated density; c- meridional integrated density. d-f: Similar to a-c but with a release location located at 160°E/5°N-5°S/1000 m depth. The mean oxygen levels are displayed in contour.
Figure 8: a: percentage of particles originating from outside the Intermediate Eastern Tropical Pacific (IETP) ocean region (release 100°W / 5°N-5°S / 1000 m) or b: originating from outside the Intermediate Western Tropical Pacific (IWTP) ocean region (release 160°E / 5°N-5°S / 1000 m) in NEMO01 (black) and NEMO05 (dash). c,d; percentage of particles originating from outside the IETP (c) and the IWTP (d): upper ocean (< 200 m) (black), deep ocean (> 2000 m) (red), subtropical region (> 10°N/S) (green), panel c: western (west of 160°W) - or panel d: eastern (east of 160°W) part of the basin (magenta).
Figure 9: a - Mean Kinetic Energy ($m^2 s^{-2} \times 1000$) (average 10°N-10°S) in GFDL01, GFDL025, GFDL01, UVIC, b - similar to a. but average 160°W-coast. Oxygen levels (mmol.m$^{-3}$) are displayed in contour. The blue contour corresponds to UVIC GD13 (Getzlaff and Dietze, 2013, including an anisotropical increase of lateral diffusion at the equator)