Journal cover Journal topic
Ocean Science An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 2.539 IF 2.539
  • IF 5-year value: 3.129 IF 5-year
    3.129
  • CiteScore value: 2.78 CiteScore
    2.78
  • SNIP value: 1.217 SNIP 1.217
  • IPP value: 2.62 IPP 2.62
  • SJR value: 1.370 SJR 1.370
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 48 Scimago H
    index 48
  • h5-index value: 32 h5-index 32
Discussion papers
https://doi.org/10.5194/os-2019-66
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/os-2019-66
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.

Submitted as: research article 11 Jul 2019

Submitted as: research article | 11 Jul 2019

Review status
This discussion paper is a preprint. It is a manuscript under review for the journal Ocean Science (OS).

Temporal evolution of Red Sea temperatures based on insitu observations (1958–2017)

Miguel Agulles1, Gabriel Jordà1,2, Burt Jones3, Susana Agustí3, and Carlos M. Duarte3,4 Miguel Agulles et al.
  • 1Instituto Mediterráneo de Estudios Avanzados (UIB-CSIC), Esporles, Spain
  • 2Centre Oceanogràfic de Balears, Instituto Español de Oceanografía, Palma, Spain
  • 3Red Sea Research Centre (RSRC), King Abdullah University of Science and Technology, Thuwal 23955, Saudi Arabia
  • 4Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology, Thuwal 23955, Saudi Arabia

Abstract. The Red Sea holds one of the most diverse marine ecosystems in the world, although fragile and vulnerable to ocean warming. Several studies have analysed the spatiotemporal evolution of the temperature in the Red Sea using satellite data, thus focusing only on the surface layer and covering the last ∼30 years. To better understand the long-term variability and trends of the temperature in the whole water column, we produce a 3D gridded temperature product (TEMPERSEA) for the period 1958–2017, based on a large number of in situ observations, covering the Red Sea and the Gulf of Aden. After a specific quality control, a mapping algorithm based on optimal interpolation has been applied to homogenize the data. Also, an estimate of the uncertainties of the product has been generated. The calibration of the algorithm and the uncertainty computation has been done through sensitivity experiments based on synthetic data from a realistic numerical simulation.

TEMPERSEA has been compared to satellite observations of sea surface temperature for the period 1981–2017, showing good agreement specially in those periods with a reasonable number of observations were available. Also, very good agreement has been found between air temperatures and reconstructed sea temperatures in the upper 100 m for the whole period 1958–2017 enhancing the confidence on the quality of the product.

The product has been used to characterize the spatio-temporal variability of the temperature field in the Red Sea and the Gulf of Aden at different time scales (seasonal, interannual and multidecadal). Clear differences have been found between the two regions suggesting that the Red Sea variability is mainly driven by air-sea interactions, while in the Gulf of Aden, the lateral advection of water also plays a relevant role. Regarding long term evolution, our results show only positive trends above 40 m depth, with maximum trends of 0.045 + 0.016 ºC decade-1 at 15 m, and the largest negative trends at 125 m (-0.072 + 0.011 ºC decade-1). Multidecadal variations have a strong impact on the trend computation, and restricting them to the last 30–40 years of data can bias high the trend estimates.

Miguel Agulles et al.
Interactive discussion
Status: open (extended)
Status: open (extended)
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
[Subscribe to comment alert] Printer-friendly Version - Printer-friendly version Supplement - Supplement
Miguel Agulles et al.
Miguel Agulles et al.
Viewed  
Total article views: 234 (including HTML, PDF, and XML)
HTML PDF XML Total BibTeX EndNote
177 54 3 234 3 4
  • HTML: 177
  • PDF: 54
  • XML: 3
  • Total: 234
  • BibTeX: 3
  • EndNote: 4
Views and downloads (calculated since 11 Jul 2019)
Cumulative views and downloads (calculated since 11 Jul 2019)
Viewed (geographical distribution)  
Total article views: 123 (including HTML, PDF, and XML) Thereof 121 with geography defined and 2 with unknown origin.
Country # Views %
  • 1
1
 
 
 
 
Cited  
Saved  
No saved metrics found.
Discussed  
No discussed metrics found.
Latest update: 17 Sep 2019
Publications Copernicus
Download
Short summary
The Red Sea holds one of the most diverse marine ecosystems in the world, although fragile and vulnerable to ocean warming. To better understand the long-term variability and trends of the temperature in the whole water column, we produce a 3D gridded temperature product (TEMPERSEA) for the period 1958–2017, based on a large number of in situ observations, covering the Red Sea and the Gulf of Aden.
The Red Sea holds one of the most diverse marine ecosystems in the world, although fragile and...
Citation