Reply to Anonymous Referee #2, Revision 2 “Fine-scale vertical structure of sound scattering layers over an east border upwelling system and its relationship to pelagic habitat characteristics” by Diogou et al.

We again are sincerely grateful to the referee for his/her last precious time and valuable comments on the revised manuscript, which clearly still continue to improve it. We have provided the answers to all comments as reported below. Note that our reply to the referee comments are written in blue, and the changes inside the text in red.

Referee2: I thank the authors for considering my suggestions and taking them into account when revising their paper, which has been significantly improved. However, I still feel it needs some further work before it can be published. My main concern, that there was not enough information presented on the identity of the organisms in the scattering layer, still remains. In this light, I was especially surprised to see “Figure revision 2” in the responses to the reviewers’ comments—I did not realize you had multifrequency data available! This in fact allows you to say a lot about the animals making up the SSLs, even if you do not have direct sampling. Looking at the multifrequency echogram included in the response to the reviews, the main SSL scatters much more strongly at 38 kHz than at 70 or 120 kHz. This alone tells you that the scattering is probably dominated by animals with gas inclusions, such as swimbladdered fishes, or siphonophores. Why isn’t this information included? It would make for a much stronger paper.

Also along these lines, you can reject copepods as the cause of the SSLs at 38 kHz. Fluid-like zooplankton such as krill and copepods will scatter more strongly at higher frequencies than 38 kHz (i.e., $S_{38} - S_{70}$ and $S_{38} - S_{120}$ will both be negative). See e.g. Chapter 7 in Simmonds and MacLennan (2005). You can then focus your discussion on the likely scatterers: small fish or fish larvae. You can discuss some of the likely species, and reason more clearly about what they’re doing in relation to upwelling.

Answer:

We agree that Swimbladdered fish are usually detected on low frequencies (18-38 kHz), while weakly scattering fluid-like zooplankton including copepod are efficiently measured at high frequencies (120-333 kHz). We agree that the multi frequency approach could probably help to optimize the species identification and thus our interpretation in this study. Thus we will correct the MS REV2 in this way, but we do not fully follow you on the remark from Simmonds and MacLennan (2005) as new literature is available on copepod detection at lower frequency. We add in the discussions more interpretations (see below) related to your recommendation that SSL probably are constituted (at least in part) of small fish.

The fact is that SSL cannot be constitute in a so wide spatial distribution of swimbladdered fishes, or siphonophores. The main swimbladdered fishes species that live in the system studied are aggregative fish, living in school, as Sardinella aurita, Sardinella maderensis, Ethmalose fimbriata, Engraulis encrasicolus, Trachurus trachurus, Trachurus trecae, etc. Such schooling behaviour is not compatible with SSL shape we observe on the echogram. Nevertheless the referee is also right and we are sure that swimbladdered fishes are present in SSL.

Nevertheless the use of multi-frequency data in this study (tropical area with high diversity) can also be misleading. The objective of this study was to investigate the spatio-temporal structuration of SSL in relation to environment variability at generic level, i.e., without species identification. As done in previous studies (Baussant et al., 1992; Boersch-Supan et al., 2017; Marchal et al., 1993) where they have investigated the link between SSL vertical structuration
and the physical and biological structure using acoustic monofrequency approach (and without biological sampling in the study area).

However, about 38 kHz vs Copepod, in a recent studies Sakınan and Güçü (2017) have estimated the distribution and abundance of black sea copepod (Calanus euxinus) using 38 kHz and 120 kHz. Therefore, using these frequencies, it’s possible to detect dense and post-copodipod-stage (C4) aggregations of C. euxinus with prosome lengths greater than 2 mm. In our study, based on literature, we can argue that the study area is dense in copepod of the same length approximately.

Moreover, looking at the multifrequency echogram figure, the 38 kHz frequency allow to find the same SSL shape than combined frequency. However, since we do not have direct sampling to corroborate this hypothesis, we will, as you suggested, reject copepods as the cause of the SSLs at 38 kHz and limit our discussion on plankton fish larvae.

We will therefore include, as recommended by the referee, the multifrequency echogram figure as Appendix (A) in the paper to justify the use of the 38 kHz, and the -75 dB threshold choice. This figure will be also used to hypothesise that the main backscatter are swimbladdered fish larvae, as you have recommended.

Find in the following text the main refinements (word correction mode) made in the different part of the paper Rev. 2:

“Materials and methods”

SSLs acoustics sensing and environmental data
We performed a hydroacoustic survey along the “Petite Côte”, south of Cap-Vert Peninsula off Senegal (14.6°–13.5° North, 16.9°–17.6° West). The survey was conducted with the research vessel Antea (IRD) during the upwelling season from 6 – 18 March 2013. The Petite Côte is a nursery area for fish and is the main area in which juveniles of numerous species (particularly small pelagic species) concentrate (Diankha et al., 2018; Thiaw et al., 2017). Strong upwelling occurs during spring, which contributes to high primary productivity, thus providing an ideal nursery area for commercially important fish species (Tiedemann and Brehmer, 2017).

We collected hydroacoustic data along three transects [T1 (North), T2 (intermediary), and T3 (South)] in 18 nautical miles (nmi) perpendicular to the coast. Hydroacoustic data were continuously recorded (day and night) using a Simrad EK60 echosounder (38, 70, 120 and 200 kHz), set at 20 log R time-varied gain function (R = range in meters) and used a pulse length of 1.0 ms. In this study, we used the acoustic monofrequency approach (using 38 kHz, one of the most current frequencies used in fisheries surveys) to study the spatio-temporal SSLs structuration. The 38 kHz frequency offers the advantages of depth-penetration covering the whole vertical range of SSLs. The multifrequency echogram was however used to identify the main scatterers of SSLs and to justify the SSLs extraction threshold (see below). Transducers were calibrated following the procedures recommended in Foote et al. (1987). Considering aft draught of the vessel, the acoustic near field and the presence of acoustics parasites (including air bubbles) in the upper part of the water column, we have applied an offset of 10 m (acoustic data above 10m have been deleted). Echoes along the three transects were integrated at a spatial resolution of 0.1 nmi*1m depth. We estimated the SSLs acoustic density by calculating the Nautical Area Scattering Coefficient (NASC or \(s_A\)), which represents the relative biomass of acoustic targets. We assumed that the composition of the scattering layers and the resulting scattering properties of organisms in the SSLs are homogeneous within each layer we identified (sensu MacLennan et al., 2002). We analyzed integrated echoes using the in-house tool “Matecho” (Perrot et al., 2018). Matecho is an integrative processing software that allows to manually correct echograms (e.g., by
correcting bottom depths, removing empty pings, removing echogram interferences, and reducing background noise).

After each echogram correction, we extracted the SSLs that were below the mean acoustic volume backscattering strength (S_v in dB) threshold of -75 dB (i.e., values below -75 dB were excluded from the analysis). Cascão et al., (2017) and Saunders et al., (2013) excluded marine pelagic organisms that backscattered at -70 dB, a threshold based on the aggregative behavior of marine pelagic organisms. The SSLs extraction method is based on a threshold of -75 dB and a Matlab algorithm used in Matecho named “contourf.m” (https://ch.mathworks.com/help/matlab/ref/contourf.html), which appear relevant to extract the main SSL at 38 kHz (Appendix A).

Appendix A: representation of an ECOAO sea survey echogram (from 06th -07th) at three frequencies. The 38 kHz response and both frequency response differences (here 70-38 kHz and 120-38 kHz) were scaled from 0-255 as CIELAB colorimetric values (https://fr.wikipedia.org/wiki/L*a*b*_CIE_1976). This method allow to clearly observe that the signal represented by green echoes (i.e. the same SSL shape than extracted at 38 kHz) is mainly associated to the 38 kHz response, whereas the 70 and 120 kHz provide lower acoustic responses.

“Discussion”
Diel temporal variation of SSLs

In our study area, the diel period consistently exhibited pronounced effects on SSLs thickness and depth. Deeper night SSLs have a greater thickness than daytime SSLs. The diel difference of thickness and depth is due to the well-known DVM patterns performed by many marine species. DVM is a behavioural mechanism usually characterized by an ascent during night-time for feeding and a descent to avoid predation by visual predators during daytime known as type I (Bianchi et al., 2013; Haney, 1988; Lehodey et al., 2015). Some plankton and micronekton organisms have been reported to exhibit reverse DVM (type II), i.e., ascending in the morning and descending in the evening or early night, which is the opposite pattern generally observed with vertically migrating animals (Cushing, 1951; Ohman et al., 1983). The main SSL scatters much more strongly at 38 kHz than at 70 or 120 kHz (Fig. 2) the backscattering response is probably dominated by swimbladdered animals such as fish larvae and small fish (Simmonds and MacLennan, 2005). Indeed, the Petite Côte is a nursery area for fish and is the main area in which juveniles of numerous species concentrate (Diankha et al., 2018; Thiw et al., 2017). Moreover Tiedemann and Brehmer (2017) have reported fish larvae (Sardinella aurita, Engraulis encrasicolus, Trachurus trachurus, Trachurus trecae, Microchirus ocellatus and Hygophum macrochi) all along our study area.

Previous studies reported that DVM of plankton may increase coastal retention in the inshore area (Brochier et al., 2018; Rojas and Landaeta, 2014). Diel variation was also observed for SSL acoustic density, which showed opposite patterns in the two areas, i.e., higher up in the water column during night than day in the inshore area and higher up during days than at night in the offshore area. Tiedemann and Brehmer (2017) observed that all fish larvae in the offshore area, except Trachurus trachurus, exhibited a DVM type II, and their observations are in accordance with the DVM pattern of SSL acoustic density reported in our study. Another possible explanation of this observed diel variation is the horizontal migration. DHM are known as nocturnal horizontal migration of both plankton and consumers into shallow and inshore waters (Benoit-Bird et al., 2001; Benoit-Bird and Au, 2006). DHM have been observed in marine copepods (Suh and Yu, 1996) which represent the main zooplankton group in the study area (Ndour et al., 2018; Rodrigues et al., 2017). It is hypothesized that these inshore–offshore migrations are a strategy for avoiding visual predators (White, 1998), and result in increased access to food resources relative to simple vertical migration (Benoit-Bird et al., 2008).

Otherwise, DVM of marine pelagic organisms may not be the only factors causing diel backscatter variations. (i) The acoustic target strength can be strongly dependent on the aspect at which a target is insonified. Target strengths of zooplankton and micronekton can vary by several orders of magnitude between extreme tilt angles, i.e., horizontal vs. head up or head down (Benoit-Bird and Au, 2004; Yasuma et al., 2003).

Effect of environmental parameters on SSLs

SSLs related to physico-chemical parameters in the vertical dimension

Previous studies have shown that hydrologic structures of the water column influence SSLs vertical structure (Balino and Aksnes, 1993; Berge et al., 2014; Gaussset and Turrel, 2001). In our case study the results show that vertical distribution of SSLs was linked to strong vertical gradients of temperature, DO, and water density (Fig. 2). The peak of Sv were sometimes very close to the strong gradient of water temperature, density, CHL and DO (Erreur ! Source du renvoi introuvable.). The depth of SSLs has been reported to be related to thermocline (Marchal et al., 1993; Yoon et al., 2007). In more stratified areas, SSLs vertical distribution was limited by a strong thermocline and when thermocline was not well marked (low gradient), SSLs occupied the entire water column (Lee et al., 2013). Olla and Davis (1990) and Rojas and Landaeta (2014b) suggested that thermocline is a physical barrier that acts above or below in the vertical distribution of some fish larvae while other studies (Gray and Kingsford, 2003; Tiedemann and Brehmer, 2017) showed no effect of a thermocline on vertical larval fishes distribution. In this study, the SSL was correlated to temperature in the offshore stratified area.
but didn’t act as a physical barrier limiting vertical distribution. Previous studies (Bertrand et al., 2010; Bianchi et al., 2013; Netburn and Koslow, 2015) have suggested that vertical distributions of SSLs organisms are limited by mid-water DO concentrations which constraint SSLs depth. These authors found a relationship between SSLs depths and hypoxia. However, in our study, we found correlation between SSLs (depth, thickness) and DO as expected, but vertical distribution of SSLs was not constrained by DO. Despite hypoxia local condition found in some stations (DO <1.42 ml l\(^{-1}\)), SSLs appeared; Consequently, DO was not a limiting factor. Fish larvae respond to oxygen gradients by moving upwards or laterally away from waters (Breitburg, 2002; 1994). Vertical movement of fish larvae may be also related to the avoidance of predators, which are limited to well oxygenate layers. The high phytoplankton concentration found in this study, particularly in the inshore area may be interpreted as a potential food source for fish larvae which are able to perform DVM towards the surface. This trophic relationship may explain the link in vertical position of the SSLs with the phytoplankton peak reported in this study.

“Behavior of SSLs relative to pelagic habitat characteristics”

Fish larvae vertical distribution have been related to that of their prey and predator, and it has been argued that the presence and position of the thermocline is an important interface in their vertical distribution (Haney, 1988; Röpke, 1993). Other studies have shown that thermocline has only a limited role in the vertical distribution patterns of fish larvae (Gray, 1996; Gray and Kingsford, 2003). Indeed, in coastal areas, where the structure of the water column is less constant than in the open sea, vertical distribution of fish larvae depends on the physics of the water column (Sánchez-Velasco et al., 2007) but also on the behavior of each species (Fortier and Harris, 1989). According to Sánchez-Velasco et al. (2007), vertical distribution of fish larvae is closely related to the changes of the water column structure, with most fish larvae concentrated in the stratum of maximum stability.
Referee2: Some further comments:

Referee2: A note on Choy et al. 2017: Jellyfish are in general weak sound-scatterers, so they do not typically show up as SSLs (unless they are physonect siphonophores, which have a gas bubble...). They also don't show up much in net tows, since they get torn up and fall apart. Choy et al. showed that jellies were important in midwater food webs, but not that they were important contributors to SSLs.

Answer:
Thank you for your remark. Since, “jelly web” are not generally considered as taking part in SSL, we will avoid adding it in this part of SSL definition as reported below:

« The SSLs represents a concentrated layer of marine organisms such as zooplankton aggregates and nekton that occur at specific depths (Benoit-Bird and Au, 2004; McManus et al., 2008) but also potentially jellyfish (Choy et al., 2017) which usually respond well at 38 kHz. »

Referee2: Figure 1: The revised version of this figure is much better and should be used in the main paper rather than the appendix. If the authors wish to increase the contrast around the upwelling zone, they could compress the color scale so that the limits are, say, 19 and 23 degrees. While the original color scale produces striking contrasts between the upwelling and non-upwelling areas, they would fall in completely different locations if the scale were shifted slightly. This is the advantage of using a perceptually uniform colorscale; differences in brightness remain proportional to differences in value even if the scale is shifted or compressed.

Answer:
As recommended, we have improved the contrast between the two areas by compressing the colour scale. This figure presented below will replace the former figure in the MS Rev2.
Referee2: Figure 2: This figure has also been improved. However, I would still request that the authors add some horizontal scale, either as a scale bar, an additional set of labels on the x-axis, or simply a reference in the figure caption, such as “the total length of the transect in (a) is ….”

Answer:

Your remark improve the figure, thank you. To avoid overloading the figure, we took your third option, i.e., to add this information in the text legend. All echograms have the same length *i.e.* 1000 ESU (1000 * 0.1 nmi). We have corrected the legend of the figure 2 as follow:

“Fig. 1: Echograms and associated vertical acoustic profiles as well as physico-chemical parameters (CTD data) for two example stations: (a) station 19 in the “inshore area” and (b) station 12 in the “offshore area”. For both (a) and (b), top panels are echogram data collected along the transect, *i.e.*, 1000 ESU (elementary sampling unit) of 0.1 nmi, whereas the bottom panels depict acoustic and environmental data (depicted by the red vertical line in top panels). Environmental data for the sound scattering layer (SSL) collected at the stations at the time depicted by dotted vertical lines. Data represent mean conditions for the station collected within an area of 0.1 nmi area around the station: acoustic volume backscattering strength (S_v) SSL, temperature profile SSL, CHL profile SSL, oxygen profile SSL, and density profile SSL.”
Referee2: Figure 6: This figure is much improved! The only remaining suggestion I would suggest is to flip the y-axis so that “up is up.”

Answer:

Good idea. We have taken into account the remark as presented below.
Referee2: Appendix I, J, and K: The coefficient values from these tables should be included in the ANCOVA results in the main text

Answer:
Ok. As reported below, we have included the coefficient values in the main text of MS REV.2 as equations:

- **In the inshore area (G1)**
The ANCOVA models to predict SSL thickness and SSL depth can be expressed as:

\[
\text{SSL thickness} = -11.865 + (0.916 \times B_d) + (11.492 \times D_p)
\]
\[
\text{SSL depth} = -4.223 + (0.954 \times B_d) + (12.864 \times D_p)
\]
With \(B_d\) = Bottom depth in m; \(D_p\) = Diel period in night.

- **In the offshore area (G2)**
The ANCOVA models to predict SSL thickness and SSL depth can be expressed as:

\[
\text{SSL thickness} = 56030 + (0.21 \times B_d) + (27.35 \times D_p) + (-383.80 \times T) - (1898 \times D) - (1.76 \times O_2)
\]
\[
\text{SSL depth} = 56040 + (0.21 \times B_d) + (27.35 \times D_p) + (-383.80 \times T) - (1898 \times D) - (1.76 \times O_2)
\]
With \(B_d\) = Bottom depth in m; \(D_p\) = Diel period in night; \(T\) = Water Temperature in °C; \(D\) = Water Density in kg m\(^{-3}\); \(O_2\) = oxygen in ml l\(^{-1}\).
Fine-scale vertical structure of sound scattering layers over an east border upwelling system and its relationship to pelagic habitat characteristics

Ndague DIOGOUL1,6,*, Patrice BREHMER2,3,6, Yannick PERROT3, Maik TIEDEMANN4, Abou THIAM1, Salaheddine EL AYOUBI5, Anne MOUGET3, Chloé MIGAYROU3, Oumar SADIO2 and Abdoulaye SARRÉ6

1 University Cheikh Anta Diop UCAD, Institute of Environmental Science (ISE), BP 5005 Dakar, Senegal
2 IRD, Univ Brest, CNRS, Ifremer, LEMAR, Campus UCAD-IRD de Hann, Dakar, Senegal
3 IRD, Univ Brest, CNRS, Ifremer, LEMAR, DR Ouest, Plouzané, France
4 Institute of Marine Research IMR, Pelagic Fish, PO Box 1870 Nordnes, 5817 Bergen, Norway
5 Institut National de Recherche Halieutique INRH, Agadir, Morocco
6 Institut Sénégalais de Recherches agricoles ISRA, Centre de Recherches Océanographiques de Dakar-Thiaroye (CRODT), BP 2221 Dakar, Senegal

*Corresponding author: diogoulndague@yahoo.fr

Abstract

Understanding the relationship between sound scattering layers ‘SSLs’ and pelagic habitat characteristics is a substantial step to apprehend ecosystem dynamics. SSLs are detected on echosounders representing aggregated marine pelagic organisms. In this study, SSL characteristics of zooplankton and micronekton were identified during an upwelling event in two contrasting areas of the Senegalese continental shelf. Here a cold upwelling influenced inshore area was sharply separated by a strong thermal boundary from a deeper warmer stratified offshore area. Mean SSL thickness and SSL vertical depth increased with the shelf depth. The thickest and deepest SSLs were observed in the offshore part of the shelf. Hence, zooplankton and micronekton seem to occur more frequently in stratified water conditions rather than in fresh upwelled water. Diel vertical and horizontal migration of SSLs were observed in the study area. Diel period and physico-chemical water characteristics influenced SSL depth and SSL thickness. Although chlorophyll-a concentration insignificantly affected SSL characteristics, the peak of chlorophyll-a was always located above or in the middle of the
SSLs, regularly matching with the peak of SSL biomass. Such observations indicate trophic relationships, suggesting SSLs being mainly composed of phytoplanktivorous zooplankton and micronekton. Despite local hypoxia, unexpectedly reported below 30 m depth, distribution patterns of SSLs indicate no vertical migration boundary. The results increase the understanding of mid-trophic species spatial organisation, migration patterns of zooplankton and micronekton as well as will improve dispersal models for organisms in upwelling regions.

Keywords: pelagic organism, micronekton, diel vertical migration (DVM), hypoxia, Senegal, West Africa.

1 Introduction

Aggregations of marine pelagic organisms in ocean water columns can be observed acoustically as sound-scattering layers (SSLs) (Evans and Hopkins, 1981; Cascão et al., 2017). The SSLs represent a concentrated layer of marine organisms such as zooplankton aggregates and nekton that occur at specific depths (Benoit-Bird and Au, 2004; McManus et al., 2008) but also potentially jellyfish (Choy et al., 2017) which usually respond well at 38 kHz. Nevertheless the “SSL” is not a biological classification, and that animals making up SSLs can be all kinds of different things, with correspondingly different biological, physiological, and ecological needs. The SSLs are dynamic, active, and have a particular behavior as a function of their community structure causing changes in their vertical distribution, size, and shape over time and space (Gómez-Gutiérrez et al., 1999). Zooplanktonic and micronektonic components are fundamental to ecosystem functioning, particularly in productive upwelling areas (e.g., off the south coast of Senegal). Knowledge of the vertical structure of SSLs allows to understand their role in ecosystems, information that can be used to monitor major environmental change and variability. Most zooplankton and micronektonic taxa undergo diel vertical migration (DVM), meaning that they reside in deep waters during the day and migrate toward the surface at night to feed (Bianchi et al., 2013; Lehodey et al., 2015). DVM behaviors are influenced by environmental cues (e.g., light, nutrients, and temperature) and predator-prey interactions (Clark and Levy, 1988; Lampert, 1989). Thus, DVMs represent an essential biological process in the ocean, one that also regulates the biological carbon pump (Hidaka et al., 2001). Zooplankton and micronekton are also known to undergo diel horizontal migration (DHM), moving them to within 1 km of the shoreline each night into waters shallower (Benoit-Bird et
These DHM, like the DVM, that they often accompany, help organisms find food and avoid predators (White, 1998).

The distribution of SSLs is influenced by a variety of environmental factors (Aoki and Inagaki, 1992; Baussant et al., 1992; Dekshenieks et al., 2001; Marchal et al., 1993). Changes in the structure and density of SSLs are associated with frontal zones (Aoki and Inagaki, 1992; Baussant et al., 1992; Boersch-Supan et al., 2017; Coyle and Cooney, 1993). Oceanic fronts are relatively narrow zones of enhanced horizontal gradients of physical, chemical and biological properties (temperature, salinity, nutrients, plankton communities, etc.) that separate broader areas of different vertical structure (stratification) (Belkin et al., 2009). Upwelling fronts are by now a very well recognized part of the coastal upwelling process. Examples occur in many well studied systems, including the upwelling off southern Senegal, south of Cap-Vert Peninsula known as the “Petite Côte” (14.6°–13.5° North, 16.9°–17.6° West). Senegalese coasts are characterized by a seasonal upwelling (in winter and late spring), mainly drifted by wind variability, topography, and density stratification (Estrade et al., 2008). During the upwelling season, northerly trade winds induce a strong upwelling core south of Dakar (Ndoye et al., 2014; Roy, 1998). The upwelling core is located over the shelf, and SST is lowest on the coastal side of the shelf break, increasing in both offshore and coastal directions. Local bottom relief combined with the wind-induced upwelling establish a typical upwelling that appear as a cold-water tongue. This cold-water tongue separates the nutrient-poor warm offshore cell with a cold nutrient-rich coastal cell functioning as a retention zone (Roy, 1998; Tiedemann and Brehmer, 2017). The Petite Côte in the Senegalese coastal shelf is a nursery area for fish and is the main area in which juveniles of numerous species particularly small pelagic species concentrate (Diankha et al., 2018; Thiaw et al., 2017). This area is also known to be rich in zooplankton and micronekton. Many zooplankton groups are encountered over the Senegalese coastal shelf: copepods, amphipods, annelids, appendicularians, chaetognaths, cirrihips, cladocerans, decapoda, echinoderms, euphausiids, gastropods, jellyfish, mysidacea, ostracods, pelagic foraminifera, Protozoa, pteropods, Spumellaria. Copepod is the most dominant group with a total abundance ranging from 50 to 90% (Anonymous, 2013; Ndour et al., 2018; Touré, 1971). Previous study (Ndour et al., 2018; Tiedemann and Brehmer, 2017) on ichthyoplankton showed that Sparidae (~50%) was predominant followed by fewer Engraulidae (~8%) and Soleidae (~7%) while smaller proportions of Clupeidae and Carangidae (~4% each) as well as Myctophidae and Sciaenidae (~2% each) were found. Physical variability in the Senegalese coastal shelf (Capet et al., 2016; Ndoye et al., 2017) can impact marine pelagic organisms at the individual and community level (Urmy and Horne, 2016). Such impact can be direct via
advection or indirect via phytoplankton production fertilized by upwelled nutrients. Indeed, changes in physico-chemical water properties and biological activities induced by upwelling plays a structuring role on the distribution of SSLs. SSLs position is often reported below the thermocline suggesting that temperature controls the SSLs vertical distribution (Aoki and Inagaki, 1992; Baussant et al., 1992; Boersch-Supan et al., 2017; Marchal et al., 1993). Bottom depth has been identified as an additional factor structuring the vertical distribution of SSLs (Gausset and Turrel, 2001). For example, the thickness and depth of an SSL on continental shelves tend to increase with an increase in water depth (Torgersen et al., 1997), similar to patterns observed in the deep sea (Berge et al., 2014; Boersch-Supan et al., 2017). In deep sea areas and over shelves, the maximum density of SSLs are often correlated with maximum chlorophyll-α concentrations (Berge et al., 2014; Dekshenieks et al., 2001; Holliday et al., 2010). Dissolved oxygen concentrations (above 1 ml l⁻¹) can also predict the lower boundary of SSL density, e.g., in Eastern Boundary Upwelling Systems (EBUS), like the Peruvian coastal upwelling system (Bertrand et al., 2010), and the California coastal upwelling system (Netburn and Koslow, 2015).

In this study, we use acoustic tools (Simmonds and MacLennan, 2005) to examine the fine-scale vertical structure of SSLs (i.e., their depth in the water column, thickness, and density) (Bertrand et al., 2013; Brehmer et al., 2006; Perrot et al., 2018). We use fine spatiotemporal resolution of acoustic data to investigate how the pelagic environment influences SSLs in the EBUS off Senegal during an upwelling event. Our objective was to model variations in SSLs structure relative to physico-chemical characteristics of water masses and their locations on the shelf.

2 Materials and methods

2.1 SSLs acoustics sensing and environmental data

We performed a hydroacoustic survey along the “Petite Côte”, south of Cap-Vert Peninsula off Senegal (14.6°–13.5° North, 16.9°–17.6° West). The survey was conducted with the research vessel Antea (IRD) during the upwelling season from 6 – 18 March 2013. The Petite Côte is a nursery area for fish and is the main area in which juveniles of numerous species (particularly small pelagic species) concentrate (Diankha et al., 2018; Thiaw et al., 2017). Strong upwelling occurs during spring, which contributes to high primary productivity, thus providing an ideal nursery area for commercially important fish species (Tiedemann and Brehmer, 2017).
We collected hydroacoustic data along three transects [T1 (North), T2 (intermediary), and T3 (South)] in 18 nautical miles (nmi) perpendicular to the coast (Fig. 1). Hydroacoustic data were continuously recorded (day and night) using a Simrad EK60 echosounder (38, 70, 120 and 200 kHz), set at 20 log R time-varied gain function (R = range in meters) and used a pulse length of 1.0 ms. In this study, we used the acoustic monofrequency approach (using 38 kHz, one of the most current frequencies used in fisheries surveys) to study the spatio-temporal SSLs structuration. The 38 kHz frequency offers the advantages of depth-penetration covering the whole vertical range of SSLs. The multifrequency echogram was used to identify the main scatterers of SSLs and to justify the SSLs extraction threshold (see below). Transducers were calibrated following the procedures recommended in Foote et al. (1987). Considering aft draught of the vessel, the acoustic near field and the presence of acoustics parasites (including air bubbles) in the upper part of the water column, we have applied an offset of 10 m (acoustic data above 10m have been deleted). Echoes along the three transects were integrated at a spatial resolution of 0.1 nmi*1m depth. We estimated the SSLs acoustic density by calculating the Nautical Area Scattering Coefficient (NASC or \(s_A\)), which represents the relative biomass of acoustic targets. We assumed that the composition of the scattering layers and the resulting scattering properties of organisms in the SSLs are homogeneous within each layer we identified (\textit{senso} MacLennan et al., 2002). We analyzed integrated echoes using the in-house tool “Matecho” (Perrot et al., 2018). Matecho is an integrative processing software that allows to manually correct echograms (\textit{e.g.}, by correcting bottom depths, removing empty pings, removing echogram interferences, and reducing background noise). After each echogram correction, we extracted the SSLs that were below the mean acoustic volume backscattering strength (\(S_v\) in dB) threshold of -75 dB \textit{(i.e.,} values below -75 dB were excluded from the analysis). Cascão et al., (2017) and Saunders et al., (2013) excluded marine pelagic organisms that backscattered at -70 dB, a threshold based on the aggregative behavior of marine pelagic organisms. The SSLs extraction method is based on a threshold of -75 dB and a Matlab algorithm used in Matecho named “contourf.m” (https://ch.mathworks.com/help/matlab/ref/contourf.html), which appear relevant to extract the main SSL at 38 kHz \textit{(Appendix A)}. This process performs a segmentation of the echointegration from the given threshold on echo levels to extract (by calculation of iso-lines according to the selected \(S_v\) threshold) the attached echo groups that formed the SSLs and their associated contours. Based on this contour, a set of descriptors are estimated, \textit{e.g.}, up and down depth of SSL, thickness. In our study, the backscattering was due to zooplankton and micronekton which also include small pelagic fish. The inshore area is known to be rich in copepod and fish larva
Ndour et al., 2018; Tiedemann and Brehmer, 2017) however, low sample number was collected in the coastal inshore water due to safety reason, i.e., research vessel investigate areas of > 20 m bottom depth.

We collected hydrologic data using a calibrated “Seabird SBE19 plus” conductivity, temperature, and depth (CTD) probe. The CTD specifications were: for temperature, ± 5.10^{-3} °C accuracy and 1.10^{-4} °C precision; for conductivity, ± 5.10^{-4} S m^{-1} accuracy and 5.10^{-5} S m^{-1} precision; for pressure, ± 0.1% of full-scale range accuracy and 2.10^{-3} % precision of full-scale range precision. The CTD was equipped with sensors for fluorescence (±2.10^{-3} μg l^{-1} accuracy, and ±2.10^{-4} μg l^{-1} precision) [a measure of chlorophyll-a concentration, a proxy for phytoplankton biomass], and dissolved oxygen (Seabird SBE43, 2% saturation for accuracy and 0.2% saturation for precision). The CTD have been calibrated before the survey. During the survey data delivered by the SBE43 for DO have been corrected by Winkler test. From 6 – 8 March 2013, we conducted CTD casts along three transects at 36 stations. At each station, sensors measured water temperature (°C), depth (m), fluorescence (μg l^{-1}), water density, here sigma-theta (kg m^{-3}), and dissolved oxygen (DO, ml l^{-1}). Global High Resolution Sea Surface Temperature (GHRSST) data were extracted from daily outputs by the Regional Ocean Modeling System group at NASA’s Jet Propulsion Laboratory (JPL OurOcean, 2010). Daily SST data (GHRSST Level 4 G1SST Global Foundation Sea Surface Temperature Analysis) were averaged for the three days of surveying using SeaDAS software version 7.2 (https://seadas.gsfc.nasa.gov/) and interpolated on maps using R software (R Core Team, 2016). Cubic spline interpolations of gridded data were used within the R package Akima (Akima et al., 2016).

2.2 Data analysis

After extracting SSLs with Matecho, we developed an ad hoc Matlab extension of Matecho named “Layer” (Appendix B). We obtained SSL thickness, minimum and maximum SSL depths (D_{min.} and D_{max.}, respectively) and an echointergrated echogram from Matecho output files to provide it to another Matlab program “ComparEchoProfil” (Appendix C). ComparEchoProfil allows to fit in time and depth echointegrated echograms to the associated CTD vertical profiles. We used the equation below to calculate thickness:

\[\text{Thickness} = D_{max.} - D_{min.} \] \hspace{1cm} (1)
Mean s_A and S_v profiles were based on the average of three ESUs (small-scale elementary sampling unit): the ESU nearest of the CTD position (ESU_{ctd}) as well as previous and following in correspondence with CTD depths (d_n):

$$s_A(d_n) = \frac{\sum_{i=\text{ESU}_{ctd}-1}^{i=\text{ESU}_{ctd}+1} s_A(i, d_n)}{3}$$

$$S_v(d_n) = 10 \times \log_{10} \left(\frac{\sum_{i=\text{ESU}_{ctd}-1}^{i=\text{ESU}_{ctd}+1} 10^{S_v(i, d_n)/10}}{3} \right)$$

The ComparEchoProfil displayed the profile for mean acoustic volume backscattering strength (S_v) in dB over an ESU of 0.1 nmi around each CTD station. The program also allowed us to display acoustic profiles for physico-chemical parameters (temperature, CHL, density, and DO) associated with S_v profiles (Fig. 2). The output included meta information [station ID, station date, station time, latitude and longitude, diel phase (day, night), and bottom depth], all of which we associated with SSLs descriptors [SSL thickness, maximum SSL depth, mean volume backscattering strength (S_v, dB) and the mean nautical area backscattering coefficient (s_A, NASC); based on classic fish school descriptors (Brehmer et al., 2007, 2019)] and physico-chemical parameters associated with each SSL.

We applied HCA to discriminate between water masses of inshore and offshore stations over the continental shelf based on CTD data collected at 10 m depth. We used PCA (Chessel et al., 2013) on the same dataset to determine similarities between CTD stations relative to environmental parameters. Physico-chemical parameters were standardized a-priori because they were measured with different metrics.

Inshore - offshore variability of morphometric (thickness, depth) and acoustic characteristics (s_A) of the SSLs are investigated in the discriminated groups considering bottom depth and diel period. Diel transition periods are removed from analyses to avoid SSL density changes bias due to diel vertical migrations. Transition periods are defined using sun altitude, $i.e.$, around sunset and sunrise corresponding to a sun altitude between $\pm 18^\circ$ (Lehodey et al., 2015). Morphometric and acoustic characteristics of the SSLs are also compared between the inshore area versus offshore area, and between day and night using student’s t-test whose application conditions density have been verified (normal distribution and variance equality).

Echogram vs. profile coupling figures (Fig. 2) resulting from the “ComparEchoProfil” were analyzed to determine the relation between environmental parameters and SSLs. ANCOVA
tests (analysis of covariance) (Wilcox, 2017) were implemented for SSLs characteristics (thickness, depth, and density) in each discriminated area (inshore and offshore). These models were set to predict each descriptor, i.e., thickness, depth, and s_A as function of temperature, density, DO, CHL, local depth and diel period. The ANCOVA models were developed on averaged data over station. The selection of the best models was performed using stepwise procedures. Stepwise selection was based on minimizing the Akaike Information Criteria (AIC) (Akaike, 1974). The relative importance of each variable in total deviance explained was determined from the “relaimpo” R package (Tonidandel and LeBreton, 2011). Validity assumptions of the models was then assessed by checking for normality of distributed errors and homogeneity of residuals (Appendix D to Appendix F). For the ANCOVA, SSL density (s_A) was log$_{10}$ transformed for normality assumption. For all statistical tests, the significance threshold used was 0.05.

We used R software (R Core Team, 2016) for statistical analyses and to map data. We used the R package ‘Cluster’ (Maechler et al., 2014) for Hierarchical Cluster Analyses (HCA) of CTD data, the R package ‘maps’ (Brownrigg, 2016) to map stations, the package ‘ade4’ (Chessel et al., 2013) to run a Principal Component Analysis (PCA), and the package ‘oce’ (Kelley, 2015) to display vertical section plots of physico-chemical parameters.

3 Results

3.1 Characterization of two water masses over the shelf

The HCA differentiated two groups of stations (Fig. 3a): Group 1 (G1) stations ($n = 18$) comprised four stations along transect T1, six stations along transect T2, and eight stations along transect T3. The G1 stations were located closest to the coast (inshore area, from 13 to 61 m bottom depth, which encompassed the core of the upwelling (based on data for sea surface temperature) (Fig. 1). Group 2 (G2) stations ($n = 18$) comprised seven stations along transect R1, six stations along transect R2, and five stations along transect R3. These stations were located furthest from shore (offshore area), from 41 to 205 m bottom depth, which corresponds to the outer border of the upwelling zone. Considering the bathymetry, we note an overlay of the two areas discriminated between 41 to 61 m.

PCA identified the same two distinct water masses that were clustered in HCA (Fig. 3). Axis 1 of the PCA eigenvalues explained 72.8 % of the inertia, whereas axis 2 explained 26.8 %. On axis 1 of the PCA plot, temperature was highly correlated with density. On axis 2, temperature, and DO were opposed to CHL. The distribution of these variables is related to the station
groupings: G1 (inshore area) was characterized by a dense and CHL-rich water mass, whereas
G2 (offshore area) was characterized by a warm and slightly oxygenated surface water mass.
Satellite measurements of SST distributions of the study area indicated the same split of
stations into two groups (Appendix G). The inshore area was characterized by low SST values
(18 – 19 °C), indicating a recently upwelled water mass, whereas an older water mass with
higher SST values (20 – 21 °C) prevailed offshore.
At transect T1, a marked frontal zone appeared isolating two water masses between the 20
– 40 m isobaths (Fig. 4a1) which separated warm surface waters from deep cold upwelled water
masses. At transects T2 and T3, the upwelling appeared as a cold-water tongue isolating a warm
water band at the coast (Fig. 4a2, a3). At T3, this cold-water tongue was expanding toward the
inshore area as well as to the offshore area (Fig. 4a3). Surface water masses of the inshore area
were slightly denser than water masses in offshore area with approximately 26 kg m\(^{-3}\) and 25
kg m\(^{-3}\), respectively. For CHL, elevated concentrations were exclusively observed in the inshore
area at transects R1 and R2. CHL was significantly higher in the inshore area than the offshore
area with concentrations of 3.0 – 5.0 mg m\(^{-3}\) in the inshore area to 0.3 – 2.0 mg m\(^{-3}\) in the
offshore area (Fig. 4c). At T3, the elevated CHL concentrations were observed in both inshore
and offshore area close to the upwelling front. CHL was higher in the upper part of the water
column (0 – 20 m) decreasing with depth in both areas. Higher DO concentrations were
observed towards both sides of the upwelling core. At T1, the upwelling front was at the most
coastal part separating the inshore area from the less oxygenated offshore area with DO
concentrations of 5.0 – 7.0 ml l\(^{-1}\) and 4.0 – 5.0 ml l\(^{-1}\), respectively. At R2 and R3, the core
moved towards the offshore, separating the inshore area (DO concentrations of 4.0 – 5.0 ml l\(^{-1}\))
slightly more oxygenated than the offshore area (DO concentrations of 2.0 – 4.0 ml l\(^{-1}\)). DO
concentration decreased from the surface to bottom in both areas.

3.2 Variability in vertical structure of SSLs
3.2.1 Spatial variability according to water mass characteristics
Thickness and depth of the SSLs varied according to bottom depth in the inshore area and
the offshore area. In the inshore area, on the northern transect T1, no SSLs were observed at
coastal stations shallower than 29 m bottom depth (stations 1 and 2) (Fig. 5a). In offshore
stations, starting at 41 m bottom depth, the SSLs were observed in all stations and transects
(Fig. 5b), and their thickness and depth increased with bottom depth. SSL thickness and SSL
depth differed significantly between the inshore area and the offshore area: the SSLs were
thicker and deeper in the offshore area than in the inshore area (Fig. 6) \(p\)-value = 0.001 for
both thickness and depth). An increase of SSL was observed with increasing bottom depths in the inshore area and the offshore area. The s_A comparison between the inshore area and the offshore area (Fig. 6) was not significantly different (p-value = 0.833).

3.2.2 Diel migration

The diel period had a significant effect on SSL thickness (p-value < 0.001), and SSL depth (p-value < 0.001) which were found both higher during the night in the inshore area and the offshore area (Fig. 6). In the inshore area, during daytime, the mean depth and thickness of SSL were 19 and 11 m respectively, while during night, the mean depth and thickness were 46 and 35 m respectively. In the offshore area, SSLs were found at a mean depth and thickness of 49 and 38 m, respectively during daytime, while during night-time SSLs, depth and thickness were 86 and 75 m, respectively.

Mean s_A (Fig. 6) of SSLs varied also between day and night but were not significantly different (p-value = 0.890). In the inshore area, the mean s_A was 24 m2 nmi$^{-2}$ during the day and 44 m2 nmi$^{-2}$ during the night. In the offshore area, the mean s_A was 46 m2 nmi$^{-2}$ during daytime, and 25 m2 nmi$^{-2}$ during night-time.

3.2.3 Vertical dimension of SSLs related to physico-chemical profile

In both areas, SSLs were partially or completely located in areas of strong vertical gradients of temperature (thermocline), density (pycnocline), and DO (oxycline) (Fig. 2). When a strong temperature gradient, usually also associated to the vertical position of the oxycline and a pycnocline, a peak of CHL was often observed and matched with the volume backscattering strength (S_v) peak (Fig. 2a). This observation is well illustrated in CTD stations 12, 13, 16, and 25 (Appendix G). In the inshore area, the peak of CHL concentration was always located above the SSLs (Fig. 2a), whereas in the offshore area, the peak of CHL concentration was either above the SSLs or in the middle of the SSLs (Fig. 2b). The thickest SSLs were observed in the offshore area where temperature, density, and oxygen gradient were strong.

3.2.4 Behavior of the SSLs relative to pelagic habitat characteristics

3.2.4.1 In the inshore area (G1)

In the inshore area (G1), the ANCOVA model indicated a strong effect of bottom depth and diel period on both SSLs thickness and depth. For SSL thickness, the model (Table 1) explained 87% of the variance ($R^2 = 0.869$, p-value = 0.001). Bottom depth explained 56% of SSL
thickness while the diel period effect accounted for 31%. The model of SSL depth (Table 2) was like those of SSL thickness, i.e., the model included bottom depth and diel period explaining 80% of the variance ($R^2 = 0.805$, p-value = 0.001). Bottom depth showed the largest effect on SSLs explaining 51% of SSL depth while the diel period effect was estimated at 30%. For SSL acoustic density, i.e., $\log(s_A)$ (Table 3), the model explained 40% of the variance ($R^2 = 0.398$, p-value = 0.022) indicating a single effect of bottom depth on $\log(s_A)$ (p-value = 0.020). The bottom depth was the only variable significant in the model and explained 33% of SSL acoustic density. Temperature was insignificant in the model.

The ANCOVA models to predict SSL thickness and SSL depth can be expressed as:

$$\text{SSL thickness} = -11.865 + (0.916 \times B_d) + (11.492 \times D_p)$$

$$\text{SSL depth} = -4.223 + (0.954 \times B_d) + (12.864 \times D_p)$$

With B_d = Bottom depth in m; D_p = Diel period in night;

3.2.4.2 In the offshore area (G2)

For offshore stations, the model showed a significant effect of diel period, temperature, water density and DO on both thickness and depth of SSLs with similar results. Both models, SSL thickness (Table 1) and SSL depth (Table 2) included bottom depth, diel period, temperature, density, and DO explaining 85% of variance ($R^2 = 0.855$, p-value = 0.001). Bottom depth and diel period accounted for 28% and 28%, respectively. Other significant variables were water temperature, density, and DO, which support 11%, 10%, and 7%, respectively. For SSL density or $\log(s_A)$ (Table 3), none of the predictor variable had a significant effect.

The ANCOVA models to predict SSL thickness and SSL depth can be expressed as:

$$\text{SSL thickness} = 56030 + (0.21 \times B_d) + (27.35 \times D_p) + (-383.80 \times T) - (1898 \times D) - (1.76 \times O_2)$$

$$\text{SSL depth} = 56040 + (0.21 \times B_d) + (27.35 \times D_p) + (-383.80 \times T) - (1898 \times D) - (1.76 \times O_2)$$

With B_d = Bottom depth in m; D_p = Diel period in night; T = Water Temperature in °C; D = Water Density in kg m$^{-3}$; O_2 = oxygen in ml l$^{-1}$.

4 Discussion

4.1 Characterization of water masses along the Petite Côte

The upwelling phenomenon is a key process in the functioning of the coastal ecosystem of Senegal and Mauritania (Capet et al., 2016; Estrade et al., 2008; Rebert, 1983). By
characterizing the physico-chemical parameters of the Petite Côte, we were able to discriminate two water masses, an inshore area and the offshore area, both of which could also be distinguished with SST satellite data.

Analyzing the spatial structure of SST helped to understand the upwelling dynamics along the Petite Côte. The SST pattern, measured at the time of our survey, were in line with prior studies. During the upwelling season (in winter and late spring), a tongue of cold water over the shelf isolates a coastal band of warm water from the offshore area, and there is a surface separation associated with the upwelling source over the shelf and convergence nearshore. The spatial difference of CHL concentration between the inshore area and the offshore area is the result of upwelled water carrying nutrients at the coast limited by water mass fronts. Nutrient-rich water, supplied to the sunlit surface layer by wind-driven upwelling stimulates the growth of phytoplankton that ultimately fuel diverse and productive marine ecosystems (Jacox et al., 2018). There is a link between the accumulation of biological material and the location of the coastal band of warm water. This coastal band between coast and the upwelling core has been regarded to function as retention area in which nutrient particles are trapped (Demarcq and Faure, 2000; Roy, 1998). The nutrient utilization is optimized by retentive physical mechanisms in the coastal area, which enhances microbial remineralization of particulate organic matter and zooplankton excretion, and then regenerates production through ammonium consumption (Auger et al., 2016). This causes an increase in primary production and results in a surplus of phytoplankton biomass in inshore areas. Low DO concentrations observed in the upwelling core separating more oxygenated water masses have been reported in previous studies (Capet et al., 2016; Teisson, 1983) over the Petite Côte. Once a water mass becomes isolated from the atmosphere, its oxygen content starts to decrease due to biological remineralisation of dissolved organic matter (Emerson et al., 2008; Machu et al., 2019). These low-oxygen bottom waters are transported to the inner shelf during upwelling favourable wind events. Moreover, temporal stability of the upwelling core is also noticeable over periods of several days to weeks; and export from the shelf to the open ocean is retarded (Capet et al., 2016). Thus, in such favorable condition of continuous food supply, photosynthesis may foster an enrichment of DO in the inshore. This is in line with high CHL levels observed towards both side of upwelling core, particularly in the inshore area.

4.2 Spatial variation of the SSLs off the Petite Côte of Senegal

We measured a longitudinal gradient in the thickness of the SSLs over the continental shelf. The SSLs were concentrated in a narrow band in the inshore area, whereas the SSLs were wider
in the offshore zone. The absence or weakness of SSLs in the inshore area (in contrast to the more stratified water column in the offshore area) may have been due to turbulence in the water column (Sengupta et al., 2017), coupled with well-mixed surface water. In the inshore area we can assume that turbulence and the probable low residence time of marine pelagic organisms advected from outside this area, both inhibited SSLs formation. Indeed, in such upwelling systems, in addition to the retention mechanism that has been recognized by several authors (Arístegui et al., 2009; Capet et al., 2016; Mbaye et al., 2015; Roy, 1998), there is also an offshore Ekman transport mechanism (Arístegui et al., 2009; Estrade et al., 2008) that contribute to cross-shore exchanges. Otherwise, different animals can respond very differently to different physical forcing. Many authors have stressed that SSLs need stable hydrological conditions to form (Aoki and Inagaki, 1992; Baussant et al., 1992; Marchal et al., 1993). As example, in Monterey Bay (California), Urmy and Horne (2016) observed a decline in acoustic backscatter intensity in the upper part of the water column immediately following an upwelling event. In a more recent study, Benoit-Bird et al (2019) found that when upwelling was strong, both krill and anchovies were found in small, discrete aggregations, while during upwelling relaxation and reversals, forage biomass was more diffusely distributed. Therefore, we assume that the increase of SSL thickness with depth from inshore to offshore off Senegal is caused by upwelled waters that disrupt the vertical stability of the water column. Therefore, although the SSLs are first constrained by the bottom depth (i.e., room available), we assume that the increase of SSL thickness with depth from inshore to offshore off Senegal is caused by upwelled waters that disrupt the vertical stability of the water column.

4.3 Diel temporal variation of SSLs

In our study area, the diel period consistently exhibited pronounced effects on SSLs thickness and depth. Deeper night SSLs have a greater thickness than daytime SSLs. The diel difference of thickness and depth is due to the well-known DVM patterns performed by many marine species. DVM is a behavioural mechanism usually characterized by an ascent during night-time for feeding and a descent to avoid predation by visual predators during daytime known as type I (Bianchi et al., 2013; Haney, 1988; Lehodey et al., 2015). Some plankton and micronekton organisms have been reported to exhibit reverse DVM (type II), i.e., ascending in the morning and descending in the evening or early night, which is the opposite pattern generally observed with vertically migrating animals (Cushing, 1951; Ohman et al., 1983). The main SSL scatters much more strongly at 38 kHz than at 70 or 120 kHz (Fig. 2) the backscattering response is probably dominated by swimbladdered animals such as fish larvae.
and small fish (Simmonds and MacLennan, 2005). Indeed, the Petite Côte is a nursery area for
fish and is the main area in which juveniles of numerous species concentrate (Diankha et al.,
2018; Thiaw et al., 2017). Moreover Tiedemann and Brehmer (2017) have reported fish larvae
(Sardinella aurita, Engraulis encrasicolus, Trachurus trachurus, Trachurus trecae, Microchirus ocellatus and Hygophum macrochi) all along our study area. Previous studies
reported that DVM of plankton may increase coastal retention in the inshore area (Brochier et
al., 2018; Mbaye et al., 2015; Rojas and Landaeta, 2014a). Diel variation was also observed for
SSL acoustic density, which showed opposite patterns in the two areas, i.e., higher up in the
water column during night than day in the inshore area and higher up during days than at night
in the offshore area. Tiedemann and Brehmer (2017) observed that all fish larvae in the offshore
area, except Trachurus trachurus, exhibited a DVM type II, and their observations are in
accordance with the DVM pattern of SSL acoustic density reported in our study. Another
possible explanation of this observed diel variation is the horizontal migration. DHM are known
as nocturnal horizontal migration of both plankton and consumers into shallow and inshore
waters (Benoit-Bird et al., 2001; Benoit-Bird and Au, 2006). DHM have been observed in
marine copepods (Suh and Yu, 1996) which represent the main zooplankton group in the study
area (Ndour et al., 2018; Rodrigues et al., 2017). It is hypothesized that these inshore–offshore
migrations are a strategy for avoiding visual predators (White, 1998), and result in increased
access to food resources relative to simple vertical migration (Benoit-Bird et al., 2008).
Otherwise, DVM of marine pelagic organisms may not be the only factors causing diel
backscatter variations. (i) The acoustic target strength can be strongly dependent on the aspect
at which a target is insonified. Target strengths of zooplankton and micronekton can vary by
several orders of magnitude between extreme tilt angles, i.e., horizontal vs. head up or head
down (Benoit-Bird and Au, 2004; Yasuma et al., 2003). Target strength is not independent of
depth, as migrations through the hydrostatic depth gradient can alter, e.g., swim bladder volume
(Fässler et al., 2009). This can bias target strengths, in particular near the resonance frequency,
leading to artificial increases of backscatter at a particular depth (Davison et al., 2015; Godø et
al., 2009; Kloser et al., 2002). (ii) in the inshore area the CTD sampling was mainly achieved
during the daytime, which can biased the observed DVM type I. (iii) Otherwise, plankton such
as fish larvae are able to perform a DVM type II by ascending in the upper 10 m of the water
column at night, i.e., in the echosounder offset.
Effect of environmental parameters on SSLs

4.4.1 SSLs related to physico-chemical parameters in the vertical dimension

Previous studies have shown that hydrologic structures of the water column influence SSLs vertical structure (Balino and Aksnes, 1993; Berge et al., 2014; Gausset and Turrel, 2001). In our case study, the results show that vertical distribution of SSLs was linked to strong vertical gradients of temperature, DO, and water density (Fig. 2). The peak of SSLs was sometimes very close to the strong gradient of water temperature, density, CHL and DO (Appendix G). The depth of SSLs has been reported to be related to thermocline (Marchal et al., 1993; Yoon et al., 2007). In more stratified areas, SSLs vertical distribution was limited by a strong thermocline and when thermocline was not well marked (low gradient), SSLs occupied the entire water column (Lee et al., 2013). Olla and Davis (1990) and Rojas and Landaeta (2014b) suggested that thermocline is a physical barrier that acts above or below in the vertical distribution of fish larvae while other studies (Gray and Kingsford, 2003; Tiedemann and Brehmer, 2017) showed no effect of a thermocline on vertical larval fishes distribution. In this study, the SSL was correlated to temperature in the offshore stratified area, but didn’t act as a physical barrier limiting vertical distribution. Previous studies (Bertrand et al., 2010; Bianchi et al., 2013; Netburn and Koslow, 2015) have suggested that vertical distributions of SSLs organisms are limited by mid-water DO concentrations which constraint SSLs depth. These authors found a relationship between SSLs depths and hypoxia. However, in our study, we found correlation between SSLs (depth, thickness) and DO as expected, but vertical distribution of SSLs was not constrained by DO. Despite hypoxia local condition found in some stations (DO <1.42 ml l$^{-1}$), SSLs appeared. Consequently, DO was not a limiting factor. Fish larvae respond to oxygen gradients by moving upwards or laterally away from waters (Breitburg, 2002; 1994). Vertical movement of fish larvae may be also related to the avoidance of predators, which are limited to well oxygenated layers. The high phytoplankton concentration found in this study, particularly in the inshore area may be interpreted as a potential food source for fish larvae which are able to perform DVM towards the surface. The vertical position of SSLs compared to the CHL concentration peak can be explained by trophic relationships between phytoplankton, zooplankton, and micronekton. It is understood that zooplanktivorous micronekton migrates upward in the water column to forage on mesozooplankton while the mesozooplankton at the same time is migrating toward the surface to graze upon the phytoplankton. This trophic relationship may explain the link in vertical position of the SSLs with the phytoplankton peak reported in this study.
4.4.2 Behavior of SSLs relative to pelagic habitat characteristics

In the inshore area, where SSLs were sparsely distributed (or sometimes non-existent) bottom depth and diel period were the main environmental parameters influencing the vertical distribution (thickness and depth) of the SSLs. Bottom depth has been shown to regulate the vertical distribution of SSLs in the water column (Donaldson, 1967; Gausset and Turrel, 2001; Torgersen et al., 1997). In our study, all stations indicated a single SSL, while in deep water more thick and deep SSLs are often partitioned into multiple layers (Ariza et al., 2016; Balino and Aksnes, 1993; Cascão et al., 2017; Gausset and Turrel, 2001). Diel period is the second most important parameter acting on SSL thickness and depth through the DVM phenomenon. In well mixed water masses, temperature, density, and oxygen had no effect on the SSLs. The insignificant effect of temperature, oxygen, and water density on the SSLs in the inshore area is explained by the presence of less marked and superficial clines because of the newly upwelled water. As stated above, SSLs need probably stable condition to occur.

In the offshore area, where vertical gradients were marked, the main parameters structuring SSL thickness and depth were bottom depth and diel period, but also water temperature, density and DO. DVM behaviors are influenced by environmental cues (e.g., light, nutrients, and temperature) and predator-prey interactions (Clark and Levy, 1988; Lampert, 1989). Relative changes in light intensity are identified as the most important proximate stimuli driving DVM, including the amplitude of the migration as well the timing of the up and downward movement (Meester, 2009). SSLs vertical distribution is known also to be a function of temperature (Bertrand et al., 2010; Hazen and Johnston, 2010; Netburn and Koslow, 2015). Overnight, depth of SSLs is strongly correlated to the depth of thermal and density gradients (Boersch-Supan et al., 2017; Cascão et al., 2017; Marchal et al., 1993). In the offshore area, the results suggest that DO also influence SSL depth and SSL thickness. In well oxygenated continental shelf waters, DO influences SSLs but do not limit their vertical distribution. Some previous work led in French Polynesia (Bertrand et al., 2000), and in the southern California current ecosystem (Netburn and Koslow, 2015) showed that the oxygen minimum zone (OMZ) act like a barrier of SSLs in their vertical distribution. Bianchi et al., (2013) suggest that distribution of open-ocean OMZ may modulate the depth of migration at the large scale, so that organisms within SSLs migrate to shallower waters in low-oxygen regions, and to deeper waters in well-oxygenated waters. For both areas, CHL concentration was the only predictor that was not included in any of the final models. However, coupling echogram vs. profile (Fig. 2), we can argue that a relation between CHL and SSLs exists even if it was not significant in the models, because CHL and SSL biomass peaks matched, i.e., always located above or in the middle of
the SSLs. Moreover, simple linear model between CHL and SSLs structure (depth and thickness) was significant in the inshore area, suggesting that CHL effect on full models was masked by autocorrelation between predictive variables.

Fish larvae vertical distribution have been related to the distribution of their prey and predator, and it has been argued that the presence and position of the thermocline is an important feature in their vertical distribution (Haney, 1988; Röpke, 1993). Other studies have shown that thermocline has only a limited role in the vertical distribution patterns of fish larvae (Gray, 1996; Gray and Kingsford, 2003). Indeed, in coastal areas, where the structure of the water column is less regular than in the open sea, vertical distribution of fish larvae depends on the physics of the water column (Sánchez-Velasco et al., 2007) but also on the behavior of each species (Fortier and Harris, 1989). According to Sánchez-Velasco et al. (2007), vertical distribution of fish larvae is closely related to the changes of the water column structure, with most fish larvae concentrated in the stratum of maximum stability. Therefore, the vertical stratification level in water column is strongly related to vertical distribution of these organisms.

Furthermore, the vertical distribution of SSLs can be influenced by mixed layer depth (MLD). The MLD is one of the primary factors affecting the vertical distribution of zooplankton. Lee et al. (2018) have shown that the weighted mean depths of SSLs exhibit a strong linear relationship with the MLD, meaning that the MLD could be a significant environmental factor controlling the habitat depth of marine pelagic organisms. A recent study (Stranne et al., 2018) has shown that the MLD can be tracked acoustically at high horizontal and vertical resolutions. The method was shown to be highly accurate when the MLD is well defined and biological scattering does not dominate the acoustic returns. However, in our study area, biological scattering dominated the acoustic records and due to the upwelling acoustic methods were not appropriate to determine MLD.

5 Conclusion

Using our echogram vs. profile coupling approach, we were able to examine fine-scale processes affecting SSLs distribution. SSLs were influenced by turbulence level in the upwelling, which lead to an offshore advection of SSLs organisms. SSLs distribution were mainly structured by bottom depth, diel period, and the level of vertical stratification in water column. SSL acoustic density variation suggested different diel migrations: a normal and reverse DVM, and/or a DHM. Such observation should be considered in modelling exercise to better understand DVM implication in ecosystem functioning. Further investigations should integrate small-scale turbulence measurements to better describe the fine scale spatiotemporal...
variability of SSLs and their relationship to the pelagic environment. Information on SSL species composition and morphological characteristics will provide accurate description of their fine scale relationship to pelagic habitat.
6 Software and Code availability

“Matecho” is an Open-Source Tool available at: https://svn.mpl.ird.fr/echopen/MATECHO/ (login: userecho, password: echopen). Other Matlab codes used in this work: “Layer” and “ComparEchoProfil” are shared in the appendix B and C of this paper.

7 Sample availability

The public cannot access our data because they belong to the partners who funded the oceanographic cruise.

8 Appendices

Appendix A: Representation of an ECOAO sea survey echogram (from 06th -07th) at three frequencies. The 38 kHz response and both frequency response differences (here 70-38 kHz and 120-38 kHz) were scaled from 0-255 as CIELAB colorimetric values (https://fr.wikipedia.org/wiki/L*a*b*_CIE_1976). This method allow to clearly observe that the signal represented by green echoes (i.e. the same SSL shape than extracted at 38 kHz) is mainly associated to the 38 kHz response, whereas the 70 and 120 kHz provide lower acoustic responses.
Appendix B: Pseudo-code of Layer Matlab code for Sound Scattering Layer (SSL) Thickness calculation. Others SSL descriptors such as acoustic volume backscattering strength (Sv) and Nautical Area Scattering Coefficient sA can also be extracted in this code.

```matlab
%% Layer

clear all; %close all;

%**************************************************************************
% CHOIX PARAMETRES
% adresse du répertoire contenant les fichiers Echointegration.mat et Layer.mat
adress_acou='E:\ECOA2013\Cruise_ECOAO2013\Treatment20171021_120009\CleanResults\Echointegration\';

% adresse du répertoire où sauver les résultats
adress_save='C:\Users\perroty\Documents\DEVELOPPEMENTS\TOOLS_IRD\Profil_station_ECOAOetAWA\ComparEchoProfil_Matecho\';

% indice de la fréquence qui sont rangées dans l'ordre croissant de fréquence (le 30kHz est kfreq=1 pour ECOAO et kfreq=2 pour Awa)
freq=1;

%**************************************************************************
load([adress_acou,'Echointegration.mat'], 'Time', 'Sv_surface', 'Sa_surface', 'depth_surface', 'depth_bottom', 'TransducerDepth', 'Night1Sunrise2Day3Sunset4', 'FrequencySort', 'BottomShift');
load([adress_acou,'Layer.mat'], 'CleanLayMask', 'LayDescription38', 'LayDescriptionHeader');

LayDescription=LayDescription38;
nbcouche=size(LayDescription,1); % LayDescription38 --> nb couche * nbre descripteur
nbesu=size(Time,2);
IdCouche=LayDescription(:,1);
IdStartCouche=LayDescription(:,5); IdEndCouche=LayDescription(:,6);
TimeStartCouche=LayDescription(:,9); TimeEndCouche=LayDescription(:,10);
DepStartCouche=LayDescription(:,11); DepEndCouche=LayDescription(:,12);
Zone=LayDescription(:,2);

EpCouche=DepEndCouche-DepStartCouche;
d=depth_surface;

nbzone=max(Zone);

EpAllZone=zeros(1,nbesu); SvAllZone=NaN(1,nbesu); SaAllZone=NaN(1,nbesu);

IndiceCoucheAllZone=NaN(1,nbesu);
DepthDebutAllZone=NaN(1,nbesu); DepthFinAllZone=NaN(1,nbesu);

%**************************************************************************
for izone=1:nbzone
    tmp0=find(Zone==izone);
    if (~isempty(tmp0))
        %**************************************************************************
        tmp0=tmp0(1); ZoneId=[IdStartCouche(tmp0):IdEndCouche(tmp0)];
        layer=CleanLayMask(:,ZoneId,kfreq); Sv0=Sv_surface(:,ZoneId,kfreq);
        Sa0=Sa_surface(:,ZoneId,kfreq); Id0=NaN(1,length(ZoneId));
        Ep=zeros(1,length(ZoneId)); Sv=NaN(1,length(ZoneId));
        Sa=NaN(1,length(ZoneId));
```
for k=1:length(ZoneId)
 tmp=find(layer(:,k)~=0);
 if(~isempty(tmp))
 IdDebut=min(tmp); IdFin=max(tmp); Id0(k)=layer(IdDebut,k);
 if(layer(IdDebut,k)==layer(IdFin,k))
 Sv(1,k)=10.*log10(nanmean(10.^(Sv0(IdDebut:IdFin,k)./10)));
 Sa(1,k)=nanmean(Sa0(IdDebut:IdFin,k));
 Ep(1,k)=d(IdFin)-d(IdDebut);
 IdDepthDebut(1,k)=IdDebut; IdDepthFin(1,k)=IdFin;
 if(Sv(1,k)==0)
 Sv(1,k)=NaN; Sa(1,k)=NaN;
 end
 else
 tmp2=find(layer(:,k)~=layer(IdDebut,k));
 layer2=layer(:,k); layer2(tmp2)=0; clear tmp2;
 clear tmp; tmp=find(layer2~=0);
 if(~isempty(tmp))
 Sv(1,k)=10.*log10(nanmean(10.^(Sv0(IdDebut:IdFin,k)./10)));
 Sa(1,k)=nanmean(Sa0(IdDebut:IdFin,k));
 Ep(1,k)=d(max(tmp))-d(min(tmp));
 DepthDebut(1,k)=d(IdDebut); DepthFin(1,k)=d(IdFin);
 IdDepthDebut(1,k)=IdDebut; IdDepthFin(1,k)=IdFin;
 if(Sv(1,k)==0)
 Sv(1,k)=NaN; Sa(1,k)=NaN;
 end
 end
 end
 else
 clear layer2;
 end
 IndiceCoucheAllZone(1,ZoneId(1):ZoneId(end))=Id0;
 EpAllZone(1,ZoneId(1):ZoneId(end))=Ep;
 SvAllZone(1,ZoneId(1):ZoneId(end))=Sv;
 SaAllZone(1,ZoneId(1):ZoneId(end))=Sa;
 DepthDebutAllZone(1,ZoneId(1):ZoneId(end))=DepthDebut;
 DepthFinAllZone(1,ZoneId(1):ZoneId(end))=DepthFin;
 IdDepthDebutAllZone(1,ZoneId(1):ZoneId(end))=IdDepthDebut;
 IdDepthFinAllZone(1,ZoneId(1):ZoneId(end))=IdDepthFin;
 clear ZoneId layer Ep Sv Sa Id0 DepthDebut DepthFin IdDepthDebut
end
save([adress_save,’EpSvSa.mat’],’IndiceCoucheAllZone’,’EpAllZone’,’SvAllZone’,’SaAllZone’,’DepthDebutAllZone’,’DepthFinAllZone’,’IdDepthDebutAllZone’,’IdDepthFinAllZone’)
Appendix C: Pseudo-code of ComparEchoProfil Matlab allowing to fit echointegrated echograms to the associated CTD vertical profiles.

```matlab
% ComparEchoProfil

clear all; close all; fclose all; warning('off');

%==========================================================================
% ECOAO : type de profils
% # name 1 = prDM: Pressure, Digiquartz [db]
% # name 2 = t090C: Temperature [ITS-90, deg C]
% # name 3 = t190C: Temperature, 2 [ITS-90, deg C]
% # name 4 = c0S/m: Conductivity [S/m]
% # name 5 = c1S/m: Conductivity, 2 [S/m]
% # name 6 = sbeox0V: Oxygen raw, SBE 43 [V]
% # name 7 = sbeox1V: Oxygen raw, SBE 43, 2 [V]
% # name 8 = par: PAR/Irradiance, Biospherical/Licor
% # name 9 = spar: SPAR/Surface Irradiance
% # name 10 = flC: Fluorescence, Chelsea Aqua 3 Chl Con [ug/l]
% # name 11 = 100-CStarTr0: Beam Transmission, WET Labs C-Star [%]
% # name 12 = altM: Altimeter [m]
% # name 13 = sbeox0ML/L: Oxygen, SBE 43 [ml/l], WS = 2
% # name 14 = sbeox0Mm/Kg: Oxygen, SBE 43 [umol/Kg], WS = 2
% # name 15 = sbeox1ML/L: Oxygen, SBE 43, 2 [ml/l], WS = 2
% # name 16 = sbeox1Mm/Kg: Oxygen, SBE 43, 2 [umol/Kg], WS = 2
% # name 17 = nbin: number of scans per bin
% # name 18 = sal00: Salinity, Practical [PSU]
% # name 19 = sal11: Salinity, Practical, 2 [PSU]
% # name 20 = sigma-é00: Density [sigma-theta, Kg/m^3]
% # name 21 = sigma-é11: Density, 2 [sigma-theta, kg/m^3]
% # name 22 = density00: Density [density, kg/m^3]
% # name 23 = density11: Density, 2 [density, kg/m^3]
% # name 24 = svCM: Sound Velocity [Chen-Millero, m/s]
% # name 25 = svCM1: Sound Velocity, 2 [Chen-Millero, m/s]
% # name 26 = nbin: Scans Per Bin
%==========================================================================

prompt = {'CAMPAGNE (taper ECOAO ou AWA)', 'CHOIX DE LA FREQUENCE A ANALYSER (ECOAO--> 38, 70, 120 ou 200 kHz - AWA--> 18, 38, 70, 120, 200 ou 333 kHz)'};
dlg_title = 'Comparaison profils CTD et Echogrammes'; num_lines = 1;
def={'ECOAO','38'}; answer = inputdlg(prompt,dlg_title,num_lines,def,'on');
if(strcmp(char(answer(1)),'ECOAO'))
```

22
camp=1;
else
 camp=2;
end

FREQUENCES=str2num(char(answer(2)));

%==
% PARAMETRES AVANCEES

% adresse du répertoire où se trouve les données acoustiques de la campagne
ECOAO et AWA (contenant tous les fichiers du type AWA2014__Y2014M02-
the16at154403-the01at075520.mat)

% adress_acou_ECOAO = 'C:\Users\USER\Desktop\HacTest\N058-S014-
S1999404\Cruise_1999404\Treatment20170818_124508\CleanResults\Echointegration\';
address_acou_ECOAO = 'E:\ECOAO2013\Cruise_ECOAO2013\Treatment20171021_120009\CleanResults\Echointegration\';

% adress_acou_AWA = 'E:\AWA2014\Cruise_AWA2014\Treatment20170615_133808\CleanResults\Echointegration\';

% adresse du répertoire où se trouve les fichiers des profils (qui doit
être différent de adress_acou)

adressprofil = 'E:\Eprofil\Station_ECOAO-AWA\';

% adresse du fichier où sont enregistrées les épaisseurs (sortie du
programme "couche.m")
address_EpSvSa = 'C:\Users\perroty\Documents\DEVELOPPEMENTS\TOOLS_IRD\Profil_station_ECOAOetAWA\ComparEchoProfile\MatechoEpSvSa.mat';

NbESUVisu = 10; % nombre d'ESU à visualiser autour de la station (moyenne
ehogramme fait sur ce nombre d'ESU)

if (camp==1)
 TrialName = 'ECOAO';
 ProfilType = [2,10,14,20];
 FileNameProfil = 'CTD_stations_ECOAO';
 adress_acou = adress_acou_ECOAO;
else
 TrialName = 'AWA';
 ProfilType = [3,9,12,16];
 FileNameProfil = 'CTD_stations_AWA';
 adress_acou = adress_acou_AWA;
end

TypeEi = 'v';
pour analyser l'échogramme des Sv, = 'a' pour les echogrammes Sa

ProfName = {'Temperature','Fluorescence','Oxygen','Density'};
ProfUnit = {'°C','µg/l','µmol/kg','kg/m^3'};

ProfilUpDown = 'd';
pour analyser le profil descendant ou = 'u' pour le profil montant

% Sauvegarde des figures
SaveFIG = 1; % =1 pour sauver les figures au format matlab (il suffit
de cliquer dessus ensuite pour les ouvrir, faire des zooms, etc.)
SaveFIGppt = 1; % =1 pour sauver toutes les figures produites dans un
powerpoint (très utile)
LabelFigHH = 1; % =1 pour afficher les numéros d'ESU en heure minute
(HH:MN), =0 sinon

%%
% Debut du programme
```matlab
% chargement profils
load('EK500_colourmap.dat'); ek5=EK500_colourmap; clear EK500_colourmap;
load([adress_profil,FileNameProfil,'.mat']); month=char(monthtr);

% chargement des sorties de couche.m (début et fin de couche)
load(adress_EpSvSa);

%for k=12:12
for k=1:length(hourtr)
    if(month(k,1)=='F')
      m=2;
    else
      m=3;
    end
    hh=str2num(hourtr(k,1:2)); mn=str2num(hourtr(k,4:5));
    ss=str2num(hourtr(k,7:8));
    timep(k)=datenum([str2num(char(yeartr(k))),m,daytr(k),hh,mn,ss]); clear hh mn ss;
    timep70(k)=(timep(k)-datenum('1970-01-01 00:00'))*60*60*24;
    timpstr(k,:)=datestr(datenum([1970 1 1 00 00 timep70(k)]),'yyyy-mm-dd HH:MM:SS');
    if(camp==1)
      temp=char(lattr(k)); ii=strfind(temp,',''); dd=str2num(temp(1:ii-1)); mn=str2num(temp(ii+1:end-1)); lat(k)=dd + mn/60;
      if(temp(end)=='S')
        lat(k)=-lat(k);
      end
      clear temp ii dd mn;
      temp=char(lontr(k)); ii=strfind(temp,',''); dd=str2num(temp(1:ii-1)); mn=str2num(temp(ii+1:end-1)); lon(k)=dd + mn/60;
      if(temp(end)=='W')
        lon(k)=-lon(k);
      end
      clear temp ii dd mn;
    else
      lat=lattr; lon=lontr;
    end
  end
  DateStation=timpstr;

filemat='Echointegration.mat';
str_fr0='000'; str_fr0(end-length(num2str(FREQUENCES))+1:end)=num2str(FREQUENCES);
repsave=[str_fr0,'kHz_',TrialName,'_',datestr(clock,'dd-mm-yyyy_HH-MM-SS')]; mkdir([pathSaveFig,repsave]);
save([pathSaveFig,repsave, '\ParametresDeTraitement.mat','DateStation','TrialName','adress_acou','adress_profil','TypeEi','FREQUENCES','FileNameProfil ','ProfilType','ProfilUpDown','ProfName']);

Kstation=0; Station=[]; kfile=1;
load([adress_acou,filemat(kfile,:),'Time']); nbesutot=size(Time,2); crit=0;
NbEsuBloc=1000; IdP=[1:NbEsuBloc];
while(crit==0)
```
if(IdP(end)>=nbesutot)
 IdP=[IdP(1):nbesutot];
 crit=1;
end

load([adress_acou, filemat(kfile,:)],'Sv_surface','Sa_surface','Time','depth_surface','depth_bottom','TransducerDepth','Night1Sunrise2Day3Sunset4','FrequencySort','BottomShift');
load([adress_acou,'Layer.mat'],'CleanLayMask');

fprintf('OK
');
Sv_surface=Sv_surface(:,IdP,:); Sa_surface=Sa_surface(:,IdP,:);
Time=Time(1,IdP); depth_bottom=depth_bottom(1,IdP);
day_night_twilight=Night1Sunrise2Day3Sunset4(1,IdP);

% mettre la ligne ci-dessous en commentaire (%) pour mettre tout l'échograme
CleanLayMask=CleanLayMask(:,IdP,:); tmp=find(CleanLayMask~=0);
CleanLayMask(tmp)=1; clear tmp; tmp=find(CleanLayMask==0);
CleanLayMask(tmp)=NaN; clear tmp; Sv_surface=Sv_surface.*CleanLayMask;
Sa_surface=Sa_surface.*CleanLayMask;

transFreq=FrequencySort;
ind=find(timep70>=Time(1) & timep70<=Time(end));
if(~isempty(ind))
 for kp=1:length(ind)
 Kstation=Kstation+1; % compteur de stations
 tmp=find(Time>=timep70(ind(kp))); IndStation=tmp(1);
 if(day_night_twilight(IndStation)==1)
 JourNuitStation(Kstation,:)=JourNuitStation(Kstation,:);
 elseif(day_night_twilight(IndStation)==2)
 JourNuitStation(Kstation,:)=JourNuitStation(Kstation,:);
 elseif(day_night_twilight(IndStation)==3)
 JourNuitStation(Kstation,:)=JourNuitStation(Kstation,:);
 elseif(day_night_twilight(IndStation)==4)
 JourNuitStation(Kstation,:)=JourNuitStation(Kstation,:);
 end
 tempek=[IndStation-NbESUVisu:1:IndStation+NbESUVisu]; clear tmp;
 if(tempek(1)<1)
 tempek=1:1:2*NbESUVisu;
 end
 if(tempek(end)>length(Time))
 tempek=length(Time)-2*NbESUVisu:1:length(Time);
 end
 dtim=Time(tempek);
 for k=1:length(Time)
 timtot(k,:)=datenum([1970 1 1 00 00 Time(k)]),'yyyy-mm-dd HH:MM:SS');
 end
 tim=timtot(tempek,:); DateESU=timtot;
 pingdeb=find(dtim>=timep70(ind(kp)));
 if(isempty(pingdeb))
pingdeb = find(abs(dtim - timep70(ind(kp)))) == min(abs(dtim - timep70(ind(kp))));
end
pingdeb = pingdeb(1);
pingdebtot = find(Time >= timep70(ind(kp)));
pingdebtot = pingdebtot(1);

if (ProfilUpDown(1) == 'd')
 Name = ['profil_d_', num2str(ind(kp))]; proftot = eval(Name);
 Name = ['profildepth_d_', num2str(ind(kp))]; D = eval(Name); clear Name;
else
 Name = ['profil_u_', num2str(ind(kp))]; proftot = eval(Name);
 Name = ['profildepth_u_', num2str(ind(kp))]; D = eval(Name); clear Name;
end
prof = proftot(:, ProfilType);

for Kfreq = 1:length(FREQUENCES)
 kfreq = find(transFreq == FREQUENCES(Kfreq) * 1000);
 Sv = Sv_surface(:, tempek, kfreq); Svtot = Sv_surface(:, :, kfreq);
 Sa = Sa_surface(:, tempek, kfreq);

 % suppression des NaNs
 Ks = 1;
 for ks = 1:size(Svtot, 2)
 tmp = find(~isnan(Svtot(:, ks)));
 if (~isempty(tmp))
 maxind(Ks) = tmp(end) + 1; Ks = Ks + 1;
 end
 clear tmp;
 end
 clear Ks; maxind = max(maxind); if (maxind > size(Svtot, 1))
 maxind = size(Svtot, 1); end; Svtot = Svtot(1:maxind,:);

 depth = depth_surface(1, 1:maxind);
 bottomtot = depth_bottom(1, :, kfreq);
 tmp = find(bottomtot > max(depth)); if (~isempty(tmp))
 bottomtot(tmp) = max(depth) .* ones(length(tmp), 1); end; clear tmp;
 bottom = bottomtot(tempek);

 % calcul profil acoustic moyen
 Saprot = nanmean(Sa.');
 Svprof = 10 .* log10(nanmean(10.^(Sv.'/10')));

 % FIGURE
 SupTitle = '';% ['PRESSE "ESC" pour faire des zooms - PRESSE
 "Y" pour revenir à toute l'image - ECHELLLE DE COULEUR: PRESSE "A" ou "Q"
 pour augmenter ou diminuer la valeur minimale des couleurs (PRESSE "Z" ou
 "S" pour augmenter ou diminuer sa valeur maximale)'];
 limax = [1 size(Svtot, 2) min(depth) max(bottomtot)]; col = [-100 -40]; zoomcurrent = limax; ClimCurrent = col; DClim = 10;
 tit = '';
 titcurrent = tit; Val = 0; kcount = 1; X = []; Y = []; aff = 0;

 % while(Val==0)% | Val==3)
close all;

figure('units','normalized','outerposition',[0 0 1 1], 'Name', 'SupTitle', 'NumberTitle', 'off');

Y(1)=DepthDebutAllZone(IdP(1)+IndStation-1);
Y(2)=DepthFinAllZone(IdP(1)+IndStation-1);
X(1)=IndStation;
X(2)=IndStation;
Val=1;

FigManage;

% end %while(Val==0 | Val==3)

if(~isnan(Y(1)))
 tmp=find(D>=Y(1) & D<=Y(2));
 if(isempty(tmp))
 Temp=NaN; Fluo=NaN; Oxy=NaN; Dens=NaN; Pc=0;
 else
 Temp=nanmean(prof(tmp,1));
 Fluo=nanmean(prof(tmp,2)); Oxy=nanmean(prof(tmp,3));
 Dens=nanmean(prof(tmp,4)); Pc=length(tmp)/length(D)*100;
 end
 clear tmp;
end

tmp=find(depth>=Y(1) & depth<=Y(2));
Samoy=nanmean(Saprof(tmp)); tmp2=nanmean(10.^(Svprof(tmp)/10));
if(~isnan(tmp2) & tmp2>0)
 Smoy=10.*log10(tmp2);
else
 Smoy=NaN;
end

clear tmp tmp2;

Station(Kstation,:)=[X(1),X(2),D(1),D(end),depth(1),bottomtot(IndStation),Time(X(1)),Y(1),bottomtot(X(1)),Time(X(2)),Y(2),bottomtot(X(2)),abs(Y(2)-Y(1)),Temp,Fluo,Oxy,Dens,Smoy,Samoy,Pc];
else
% si pas de couche
 Temp=nanmean(prof(:,1)); Fluo=nanmean(prof(:,2));
 Oxy=nanmean(prof(:,3)); Dens=nanmean(prof(:,4));
 Smoy=10.*log10(nanmean(10.^(Svprof/10)))); Samoy=nanmean(Saprof);
end

Station(Kstation,:)=[NaN,NaN,D(1),D(end),depth(1),bottomtot(IndStation),NaN,NaN,NaN,NaN,NaN,NaN,NaN,NaN,NaN,NaN,NaN,NaN,NaN,NaN,NaN,NaN];
end

SvMoyStation(Kstation).Sv=Svprof;
SvMoyStation(Kstation).Sa=Saprof;

%==

% SAUVEGARDES

ClimCurrent=col; zoomcurrent=limax; aff=1; FigManage;

aff=0;
if(SaveFIG==1)
 str_st='000'; str_st(end-length(num2str(ind(kp)))+1:end)=num2str(ind(kp)); str_fr='000'; str_fr(end-length(num2str(transFreq(kfreq)/1000)))+1:end)=num2str(transFreq(kfreq)/1000);
saveas(gcf,[pathSaveFig,repsave,'\',TrialName,'_Station',str_st,'-',str_fr,'kHz'],'fig');
end
if(SaveFIGppt==1)
saveppt([pathSaveFig,repsave,'\',TrialName,'_AllStations.ppt']);
end
bottomtot;
end %for kfreq=1:length(transFreq)
clear Temperature Fluorescence Oxygene Density Smoy X Y Pc;
close IndStation;
end %for kp=1:length(ind)
end % if(~isempty(ind))
clear ind;
IdP=IdP+NbEsuBloc;
end % for kfile=1:size(filemat,1)
if(~isempty(Station))
LatitudeStation=lat; LongitudeStation=lon;
save([pathSaveFig,repsave,'\Stations_','TrialName','_','str_fr0','kHz.mat'],'Jo
urNuitStation','DateESU','LatitudeStation','LongitudeStation','Station','Sv
MoyStation');
end % ecriture du fichier excel de résultats
fid=fopen([pathSaveFig,repsave,'\Stations_','TrialName','_','str_fr0','kHz.xls']
',wt');
fprintf(fid,'N°station \t Date station \t Latitude station (deg) \t Longitude station (deg) \t Ephéméride à la station \t Profondeur minimale station (m) \t Profondeur maximale station (m) \t Profondeur minimale echogramme sur station (m) \t Profondeur maximale echogramme sur station (m) \t Date point1 (seconde depuis 1970) \t Profondeur point1 (m) \t Date point2 (seconde depuis 1970) \t Profondeur point2 (m) \t Profondeur point1 (m) \t Temperature moyenne dans la couche (°C) \t Profondeur point1 (m) \t Densité moyenne dans la couche (kg/m3) \t Temperature moyenne dans la couche (°C) \t Fluorescence moyenne dans la couche (µg/l) \t Oxygène moyen dans la couche (µmol/kg) \t Densité moyenne dans la couche (kg/m3) \t Sv moyen dans la couche (dB) \t Sv moyen dans la couche (dB)
');
for k=1:size(Station,1)
fprintf(fid,'%i \t %s \t %4.4f \t %4.4f \t %s \t %4.2f \t %4.2f
\t %4.2f \t %4.2f \t %4.2f \t %4.2f \t %4.2f \t %4.2f %
\n',k,char(timpstr(k,:)),lat(k),lon(k),char(JourNuitStation(k,:)),Station(k
,3:end));
end
fclose all;
fprintf('Le\tn résultat ont\nseu\nards dans le	épertoire:\n');
cd([pathSaveFig,repsave]);
else
fprintf('Aucune station n\a été traitée !!!\n');
end
warning('on')
Appendix D: Diagnostic diagrams of ANCOVA (Analysis of Covariance) models between sound scattering layers (SSLs) depth and environmental parameters (water temperature, density, dissolved oxygen, chlorophyll-α, diel period, and bottom depth).

A.1. Inshore area (G1)
A.2. Offshore area (G2)
Appendix E: Diagnostic diagrams of ANCOVA (Analysis of Covariance) models between sound scattering layers (SSLs) thickness and environmental parameters (water temperature, density, dissolved oxygen, chlorophyll-α, and bottom depth).

B.1. Inshore area (G1)
B.2. Offshore area (G2)
Appendix F: Diagnostic diagrams of ANCOVA (Analysis of Covariance) models between sound scattering layers (SSLs) density and environmental parameters (water temperature, density, dissolved oxygen, chlorophyll-a, and bottom depth).

C.1. Inshore area (G1)
C.2 Offshore area (G2)
Appendix G: Vertical profile from CTD stations associated to acoustic volume backscattering strength (S_v, in dB) integrated per elementary sampling unit (ESU) of 0.1 nmi for 4 stations: station 12, 13, 16, and 25. The peak of S_v is close to the fluorescence peak (proxy chlorophyll-a concentration, in μg l$^{-1}$) and are related to strong gradient of water temperature, itself related to water density and dissolved oxygen. From the top left to bottom right (i) vertical profile S_v (dB) in the sound scattering layers (SSLs); (ii) Profile of mean temperature in SSLs ($^\circ$C); (iii) profile of fluorescence in SSLs; (iv) profile of dissolved oxygen in SSLs (ml l$^{-1}$); (v) and profile of water density in SSLs (kg m$^{-3}$).
Appendix H: Positions of vertical CTD stations sampled with a CTD instrument. Diagrams depict temperature, density, fluorescence, and dissolved oxygen relative to daily maps of Sea Surface Temperature (SST) off the Petite Côte (Senegal, West Africa) during the 2014 hydroacoustic survey. (a) Stations along Transect 1 (6 May), (b) stations along Transect 2 (7 May), and (c) stations along Transect 3 (8 May). The blue points are locations for stations of Group 1 (inshore area); red points are locations for stations of Group 2 (offshore area), discriminated according to CTD values measured at 0–10 m depth.
Appendix I: Mean S_v distribution of SSLs during daytimes (A) and night-times (B) in the study area.

A)

B)
Appendix J: Result of ANCOVA models between thickness of sound scattering layers (SSLs) and environmental parameters (temperature, density, dissolved oxygen, chlorophyll-a, diel period and bottom depth) in the inshore area (G1) and the offshore area (G2). [G1: Multiple R-squared: 0.869, Adjusted R-squared: 0.8515, p-value: 0.000]; and [G2: Multiple R-squared: 0.8557, Adjusted R-squared: 0.7956, p-value: 0.000]. Significant p-value in bold.

<table>
<thead>
<tr>
<th>Group</th>
<th>Coefficient Estimate</th>
<th>Std. Error</th>
<th>t value</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Inshore</td>
<td>Offshore</td>
<td>Inshore</td>
<td>Offshore</td>
</tr>
<tr>
<td>Intercept</td>
<td>-11.865</td>
<td>56030</td>
<td>4.161</td>
<td>17610</td>
</tr>
<tr>
<td>Bottom depth</td>
<td>0.916</td>
<td>0.21</td>
<td>0.148</td>
<td>0.06</td>
</tr>
<tr>
<td>Diel period (Night)</td>
<td>11.492</td>
<td>27.35</td>
<td>3.735</td>
<td>8.69</td>
</tr>
<tr>
<td>Temperature</td>
<td>-</td>
<td>-383.80</td>
<td>-</td>
<td>119.60</td>
</tr>
<tr>
<td>Density</td>
<td>-</td>
<td>-1898</td>
<td>-</td>
<td>598.50</td>
</tr>
<tr>
<td>Oxygen</td>
<td>-</td>
<td>-1.76</td>
<td>-</td>
<td>0.55</td>
</tr>
</tbody>
</table>
Appendix K: Result of ANCOVA models between depth of scattering layers (SLs) and environmental parameters in the inshore area (G1) and the offshore area (G2). [G1: Multiple R-squared: 0.8056, Adjusted R-squared: 0.7797, p-value: 0.000]; and [G2: Multiple R-squared: 0.8557, Adjusted R-squared: 0.7956, p-value: 0.000]. Significant p-value in bold.

<table>
<thead>
<tr>
<th>Group</th>
<th>Coefficient Estimate</th>
<th>Std. Error</th>
<th>t value</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Inshore</td>
<td>Offshore</td>
<td>Inshore</td>
<td>Offshore</td>
</tr>
<tr>
<td>Intercept</td>
<td>-4.223</td>
<td>56040</td>
<td>5.603</td>
<td>17610</td>
</tr>
<tr>
<td>Bottom depth</td>
<td>0.954</td>
<td>0.21</td>
<td>0.200</td>
<td>0.060</td>
</tr>
<tr>
<td>Diel period (Night)</td>
<td>12.864</td>
<td>27.35</td>
<td>5.030</td>
<td>8.690</td>
</tr>
<tr>
<td>Temperature</td>
<td>-</td>
<td>-383.80</td>
<td>-</td>
<td>119.60</td>
</tr>
<tr>
<td>Density</td>
<td>-</td>
<td>-1898</td>
<td>-</td>
<td>598.50</td>
</tr>
<tr>
<td>Oxygen</td>
<td>-</td>
<td>-1.76</td>
<td>-</td>
<td>0.550</td>
</tr>
</tbody>
</table>
Appendix L: Result of ANCOVA models between sound scattering layers (SSLs) density ($\log s_A$) and environmental parameters in the inshore area (G1) and the offshore area (G2). [G1: Multiple R-squared: 0.398, Adjusted R-squared: 0.3178, p-value: 0.022]; and [G2: Multiple R-squared: 0.3448, Adjusted R-squared: -0.01258, p-value: 0.490]. Significant p-value in bold.

<table>
<thead>
<tr>
<th>Group</th>
<th>Coefficient Estimate</th>
<th>Std. Error</th>
<th>t value</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Inshore</td>
<td>Offshore</td>
<td>Inshore</td>
<td>Offshore</td>
</tr>
<tr>
<td>Intercept</td>
<td>-9.007</td>
<td>-489.2</td>
<td>5.784</td>
<td>405.7</td>
</tr>
<tr>
<td>Bottom depth</td>
<td>0.028</td>
<td>-0.001</td>
<td>0.009</td>
<td>0.011</td>
</tr>
<tr>
<td>Temperature</td>
<td>0.578</td>
<td>3.207</td>
<td>0.350</td>
<td>2.78</td>
</tr>
<tr>
<td>Diel period (Night)</td>
<td>-0.126</td>
<td>-</td>
<td>0.202</td>
<td>-0.62</td>
</tr>
<tr>
<td>Density</td>
<td>-1.673</td>
<td>-</td>
<td>13.78</td>
<td>-1.21</td>
</tr>
<tr>
<td>Oxygen</td>
<td>-0.016</td>
<td>-</td>
<td>0.010</td>
<td>-1.48</td>
</tr>
<tr>
<td>Chlorophyll a</td>
<td>-0.679</td>
<td>-</td>
<td>1.22</td>
<td>0.55</td>
</tr>
</tbody>
</table>
9 Author contribution

Ms. Ndague DIOGOUL set the methodology, analysed data and redacted the paper and the review. Patrice BREHMER was cruise leader on the ECOAO sea survey, defined the sampling design, collected the data, defined the methodology, supervised the work and the review and took charge of the acquisition of the financial support for the project leading to this publication. Maik TIEDEMANN helped on data processing and analyses, paper redaction and the review. Yannick PERROT developed the “Matecho” software tool and Matlab code, contributed to the redaction and data collection as Abdoulaye SARRÉ. Abou THIAM, and Salaheddine EL AYOUBI contributed to the Ndague DIOGOUL PhD supervision. Anne MOUGET and Chloé MIGAYROU helped on statistical analyses and Oumar SADIO performed the early PCA on CTD data.

10 Acknowledgments

Results of this paper were discussed during international conferences (ICAWA) in Dakar (2016) and in Mindelo (2017). We thank the participants for helpful comments made during these conferences. We are thankful to the AWA project (Ecosystem Approach to Management of Fisheries and Marine Environment in West African Waters) funded by IRD and the BMBF (grant 01DG12073E), and the PREFACE project (Enhancing Prediction of Tropical Atlantic Climate and its Impacts) funded by the European Commission’s Seventh Framework Programme under Grant Agreement number 603521 and then the TriAtlas project (GA n. 817578; EU H2020 R&I programme), and all IRD - ISRA/CRODT - Genavir staff helping us at sea during the survey (doi: 10.17600/13110030). We thank Gildas Roudaut, Fabrice Roubaud, François Baurand and the US Imago (IRD) for data collection on-board FRV Antea (IRD), the Gnavir crew of Antea, Dominique Dagorne (IRD) curating satellite products, as well as the personal of ISRA/CRODT (Senegal), IRD DR-Ouest (France) and INRH (Morocco) for their administrative help during Ms. Ndague Diogoul PhD stays in Morocco financed by OWSD (Organization for Women in Sciences for the Developing World). We thank Dr Heino Fock (TI, Germany) for his helpful comments on this works paper which significantly improve the paper quality, as well as anonymous referee.

11 References

12 Tables

Table 1: Result of ANCOVA models between thickness of sound scattering layers (SSLs) and environmental parameters (temperature, density, dissolved oxygen, chlorophyll-a, diel period and bottom depth) in the inshore area (G1) and the offshore area (G2). [G1: Multiple R-squared: 0.869, Adjusted R-squared: 0.8515, \(p \)-value < 0.001]; and [G2: Multiple R-squared: 0.8557, Adjusted R-squared: 0.7956, \(p \)-value < 0.001]. Significant \(p \)-value in bold.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Significance</th>
<th>Explained deviance (%)</th>
<th>Total explained variance (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Inshore (G1)</td>
<td>Offshore (G2)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Explained deviance (%)</td>
<td>Total explained variance (%)</td>
<td></td>
</tr>
<tr>
<td>Bottom depth</td>
<td>0.001</td>
<td>0.005</td>
<td>55.86</td>
</tr>
<tr>
<td>Diel period</td>
<td>0.007</td>
<td>0.008</td>
<td>31.02</td>
</tr>
<tr>
<td>(Night)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Temperature</td>
<td>0.007</td>
<td></td>
<td>11.29</td>
</tr>
<tr>
<td>Density</td>
<td>0.008</td>
<td></td>
<td>10.35</td>
</tr>
<tr>
<td>Oxygen</td>
<td>0.007</td>
<td></td>
<td>7.53</td>
</tr>
</tbody>
</table>

Table 2: Result of ANCOVA models between depth of sound scattering layers (SSLs) and environmental parameters (temperature, density, dissolved oxygen, chlorophyll-\textit{a}, diel period, and bottom depth) in the inshore area (G1) and the offshore area (G2). [G1: Multiple R-squared: 0.8056, Adjusted R-squared: 0.7797, \textit{p}-value: 0.001]; and [G2: Multiple R-squared: 0.8557, Adjusted R-squared: 0.7956, \textit{p}-value: 0.000]. Significant \textit{p}-value in bold.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Significance</th>
<th>Explained deviance (%)</th>
<th>Total explained variance (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Inshore (G1)</td>
<td>Offshore (G2)</td>
<td>Inshore (G1)</td>
</tr>
<tr>
<td>Bottom depth</td>
<td>0.001</td>
<td>0.005</td>
<td>55.86</td>
</tr>
<tr>
<td>Diel period</td>
<td>0.021</td>
<td>0.008</td>
<td>31.02</td>
</tr>
<tr>
<td>(Night)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Temperature</td>
<td>0.007</td>
<td></td>
<td>11.29</td>
</tr>
<tr>
<td>Density</td>
<td>0.008</td>
<td></td>
<td>10.35</td>
</tr>
<tr>
<td>Oxygen</td>
<td>0.007</td>
<td></td>
<td>7.53</td>
</tr>
</tbody>
</table>
Table 3: Result of ANCOVA models between sound scattering layers (SSLs) density (log(sA)) and environmental parameters (temperature, density, dissolved oxygen, chlorophyll-a, diel period, and bottom depth) in the inshore area (G1) and the offshore area (G2). [G1: Multiple R-squared: 0.398, Adjusted R-squared: 0.3178, p-value: 0.022]; and [G2: Multiple R-squared: 0.3448, Adjusted R-squared: -0.01258, p-value: 0.490]. Significant p-value in bold.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Significance</th>
<th>Explained deviance (%)</th>
<th>Total explained variance (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Inshore (G1)</td>
<td>Offshore (G2)</td>
<td>Inshore (G1)</td>
</tr>
<tr>
<td>Bottom depth</td>
<td>0.008</td>
<td>0.357</td>
<td>33.06</td>
</tr>
<tr>
<td>Temperature</td>
<td>0.119</td>
<td>0.273</td>
<td>6.73</td>
</tr>
<tr>
<td>Diel period (Night)</td>
<td>0.007</td>
<td>0.546</td>
<td>7.22</td>
</tr>
<tr>
<td>Density</td>
<td>0.008</td>
<td>0.250</td>
<td>5.56</td>
</tr>
<tr>
<td>Oxygen</td>
<td>0.007</td>
<td>0.166</td>
<td>5.19</td>
</tr>
</tbody>
</table>
13 Figures
Fig. 1: Location of the survey area off the southern Senegalese (West African) coast. The hydroacoustic survey was conducted with FRV Antea (IRD) from Dakar (Cap Vert peninsula in the north) to the northern border of Gambia (horizontal black line). CTD-probes collected data at stations along three transects perpendicular to the coast (R1 to R3). Sea surface temperature (SST, °C) were averaged over the three days of CTD sampling from the 6–8 March 2013. Stations of Group 1 (blue circles) occurred in the inshore zone, whereas stations of Group 2 (red triangles) were situated more offshore.
Fig. 2: Echograms and associated vertical acoustic profiles as well as physico-chemical parameters (CTD data) for two example stations: (a) station 19 in the “inshore area” and (b) station 12 in the “offshore area”. For both (a) and (b), top panels are echogram data collected along the transect (nmi), i.e., 1000 ESU (elementary sampling unit) of 0.1 nmi, whereas the bottom panels depict acoustic and environmental data (depicted by the red vertical line in top panels). Environmental data for the sound scattering layer (SSL) collected at the stations at the time depicted by dotted vertical
lines. Data represent mean conditions for the station collected within an area of 0.1 nmi area around the station: acoustic volume backscattering strength (S_v) SSL, temperature profile SSL, CHL profile SSL, oxygen profile SSL, and density profile SSL.
Fig. 3: Discrimination of 36 CTD stations off the Senegalese coast: (1) Two groups of stations were discriminated based on temperature (temp), chlorophyll-α (CHL), dissolved oxygen (oxy), and density (dens). (2) Principal Components Analysis of environmental parameters for all 36 stations. (a) Eigenvalue diagram; (b) Factor plane; (c) Correlation circle. Group 1 are stations located in the inshore area (n = 18), Group 2 are stations located in the offshore area (n = 18).
Fig. 4: Mean vertical profiles of (a) temperature, (b) density, (c) chlorophyll-a concentration, (d) dissolved oxygen, and (e) square rooted Nautical Area Scattering Coefficient (s_A) in the three transects (T1, T2, T3; see Fig. 1) with positions of vertical probe stations CTD in the inshore area (vertical line in blue (G1)) and the offshore area (vertical line in red (G2)).
TRANSECT 1

TRANSECT 2

TRANSECT 3

Mean depth (m)

Bottom depth (m)
Fig. 5: Sound scattering layers (SSLs) mean depth (empty circle) according to their bottom depth, with their associated thickness (line, in meter), and SSL mean Nautical Area Scattering Coefficient (NASC or s_A in m2 nmi$^{-2}$), along transect 1 (south), 2 (intermediary), and 3 (north) during nighttime (black) and daytime (grey) sampling periods.
Fig. 6: Box plot (minimum, maximum, and median) of sound scattering layers (SSLs) mean depth (m), thickness (m), and relative biomass (s_A in m^2 nm$^{-2}$) grouped by diel period (days/night) for (a) inshore area; and (b) offshore area over the Senegalese continental shelf.