Journal cover Journal topic
Ocean Science An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 2.539 IF 2.539
  • IF 5-year value: 3.129 IF 5-year
    3.129
  • CiteScore value: 2.78 CiteScore
    2.78
  • SNIP value: 1.217 SNIP 1.217
  • IPP value: 2.62 IPP 2.62
  • SJR value: 1.370 SJR 1.370
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 48 Scimago H
    index 48
  • h5-index value: 32 h5-index 32
Discussion papers
https://doi.org/10.5194/os-2019-121
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/os-2019-121
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.

Submitted as: research article 03 Jan 2020

Submitted as: research article | 03 Jan 2020

Review status
This discussion paper is a preprint. It is a manuscript under review for the journal Ocean Science (OS).

Bottom-water temperature controls on biogenic silica dissolution and recycling in surficial deep-sea sediments

Shahab Varkouhi and Jonathan Wells Shahab Varkouhi and Jonathan Wells
  • Department of Earth Sciences, University of Oxford, Oxford, UK

Abstract. This study calculated the dissolution rates of biogenic silica deposited on the seafloor and the silicic acid benthic flux for 22 Ocean Drilling Program sites. Simple models developed for two host sediment types – detrital and carbonate – were used to explain the variability of biogenic opal dissolution and recycling under present-day low (−0.3 to 2.14 °C) bottom-water temperatures. The kinetic constants describing silicic acid release and silica saturation concentration increased systematically with increasing bottom-water temperatures. When these temperature effects were incorporated into the diagenetic models, the prediction of dissolution rates and diffusive fluxes was more robust. This demonstrates that temperature acts as a primary control that decreases the relative degree of pore-water saturation with opal while increasing the silica concentration. The correlation between the dissolution rate and benthic flux with temperature was pronounced at sites where biogenic opal is accommodated in surficial sediments mostly comprised of biogenic carbonates. This is because the dissolution of carbonates provides the alkalinity necessary for both silica dissolution and clay formation; thus strongly reducing the retarding influence of clays on opal dissolution. Conversely, the silica exchange rates were modified by presence of aluminosilicates, which led to a higher burial efficiency for opal in detrital- than in carbonate-dominated benthic layers. Though model prediction of first-order silica early transformation suggests likely effects from surface temperatures (0–4 °C) on opal-CT precipitation over short geological times (< 4 Ma) near seabed in the Antarctic Site 751, the relationship between silica solubility and surface area variability in time is a more critical control. Since silica solubility and surface area decrease with time, a < 4 Ma elapsed time aged opal-A to the point that changes in specific surface area caused minor effects on solubility, allowing for formation of opal-CT at low temperature settings near the seabed.

Shahab Varkouhi and Jonathan Wells
Interactive discussion
Status: open (until 02 Mar 2020)
Status: open (until 02 Mar 2020)
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
[Subscribe to comment alert] Printer-friendly Version - Printer-friendly version Supplement - Supplement
Shahab Varkouhi and Jonathan Wells
Shahab Varkouhi and Jonathan Wells
Viewed  
Total article views: 112 (including HTML, PDF, and XML)
HTML PDF XML Total BibTeX EndNote
90 20 2 112 2 5
  • HTML: 90
  • PDF: 20
  • XML: 2
  • Total: 112
  • BibTeX: 2
  • EndNote: 5
Views and downloads (calculated since 03 Jan 2020)
Cumulative views and downloads (calculated since 03 Jan 2020)
Viewed (geographical distribution)  
Total article views: 69 (including HTML, PDF, and XML) Thereof 69 with geography defined and 0 with unknown origin.
Country # Views %
  • 1
1
 
 
 
 
Cited  
Saved  
No saved metrics found.
Discussed  
No discussed metrics found.
Latest update: 27 Jan 2020
Publications Copernicus
Download
Citation