Journal cover Journal topic
Ocean Science An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 2.539 IF 2.539
  • IF 5-year value: 3.129 IF 5-year
    3.129
  • CiteScore value: 2.78 CiteScore
    2.78
  • SNIP value: 1.217 SNIP 1.217
  • IPP value: 2.62 IPP 2.62
  • SJR value: 1.370 SJR 1.370
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 48 Scimago H
    index 48
  • h5-index value: 32 h5-index 32
Discussion papers
https://doi.org/10.5194/os-2019-109
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/os-2019-109
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.

Submitted as: research article 29 Oct 2019

Submitted as: research article | 29 Oct 2019

Review status
This discussion paper is a preprint. It is a manuscript under review for the journal Ocean Science (OS).

Mechanisms of the time-varying sea surface height and heat content trends in the eastern Nordic Seas

Sara Broomé, Léon Chafik, and Johan Nilsson Sara Broomé et al.
  • Department of Meteorology and Bolin Centre for Climate Research, Stockholm University, Stockholm, Sweden

Abstract. The Nordic Seas is the main ocean conveyor of heat between the North Atlantic Ocean and the Arctic Ocean. Although the decadal variability of the Subpolar North Atlantic has been given significant attention lately, especially regarding the cooling trend since mid-2000s, less is known about the potential connection downstream in the northern basins. Using sea surface heights from satellite altimetry over the past 25 years (1993–2017), we find significant variability on multiyear-to-decadal time scales in the Nordic Seas. In particular, the regional trends in sea surface height show signs of a slowdown since mid-2000s as compared to the rapid increase in the preceding decade since early 1990s. This change is most prominent in the Atlantic origin waters in the eastern Nordic Seas and is closely linked, as estimated from hydrography, to heat content. Furthermore, we formulate a simple heat budget for the eastern Nordic Seas to discuss the relative importance of local and remote sources of variability; advection of temperature anomalies in the Atlantic inflow is found to be the main mechanism. A conceptual model of ocean heat convergence, with only upstream temperature measurements at the inflow to the Nordic Seas as input, is able to reproduce key aspects of the decadal variability of the Nordic Seas' heat content. Based on these results, we argue that there is a strong connection with the upstream Subpolar North Atlantic. However, although the shift in trends in the mid-2000s is coincident in the Nordic Seas and the Subpolar North Atlantic, the eastern Nordic Seas has not seen a reversal of trends but instead maintain elevated sea surface heights and heat content in the recent decade considered here.

Sara Broomé et al.
Interactive discussion
Status: open (until 27 Dec 2019)
Status: open (until 27 Dec 2019)
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
[Subscribe to comment alert] Printer-friendly Version - Printer-friendly version Supplement - Supplement
Sara Broomé et al.
Sara Broomé et al.
Viewed  
Total article views: 170 (including HTML, PDF, and XML)
HTML PDF XML Total BibTeX EndNote
132 33 5 170 2 4
  • HTML: 132
  • PDF: 33
  • XML: 5
  • Total: 170
  • BibTeX: 2
  • EndNote: 4
Views and downloads (calculated since 29 Oct 2019)
Cumulative views and downloads (calculated since 29 Oct 2019)
Viewed (geographical distribution)  
Total article views: 101 (including HTML, PDF, and XML) Thereof 101 with geography defined and 0 with unknown origin.
Country # Views %
  • 1
1
 
 
 
 
Cited  
Saved  
No saved metrics found.
Discussed  
No discussed metrics found.
Latest update: 20 Nov 2019
Publications Copernicus
Download
Short summary
Observations in the Nordic Seas have shown a general warming and an increase in sea surface height over the last few decades. However, our results reveal that the sea surface heights and heat content in the decade following the mid-2000s have not risen much or even stagnated. This is most prominent in the eastern Nordic Seas, where waters of Atlantic origin dominate. We conclude that this stagnation is possibly a consequence of decreased heat transport from the Subpolar North Atlantic.
Observations in the Nordic Seas have shown a general warming and an increase in sea surface...
Citation