Journal cover Journal topic
Ocean Science An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 2.539 IF 2.539
  • IF 5-year value: 3.129 IF 5-year
  • CiteScore value: 2.78 CiteScore
  • SNIP value: 1.217 SNIP 1.217
  • IPP value: 2.62 IPP 2.62
  • SJR value: 1.370 SJR 1.370
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 48 Scimago H
    index 48
  • h5-index value: 32 h5-index 32
Discussion papers
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.

Research article 18 Feb 2019

Research article | 18 Feb 2019

Review status
This discussion paper is a preprint. A revision of the manuscript is under review for the journal Ocean Science (OS).

Present-climate trends and variability in thermohaline properties of the northern Adriatic shelf

Ivica Vilibić1, Petra Zemunik1, Jadranka Šepic1, Natalija Dunić1, Oussama Marzouk2, Hrvoje Mihanović1, Clea Denamiel1, Robert Precali3, and Tamara Djakovac3 Ivica Vilibić et al.
  • 1Institute of Oceanography and Fisheries, Split, Croatia
  • 2Student at SeaTech, University of Toulon, Toulon, France
  • 3Center for Marine Research, Ruđer Bošković Institute, Rovinj, Croatia

Abstract. The paper documents seasonality, interannual to decadal variability and trends in temperature, salinity and density over a transect in the shallow northern Adriatic Sea (Mediterranean Sea) between 1979 and 2017. Amplitude of seasonality decreases with depth, and is much larger in temperature and density than in salinity. Interannual to decadal variability in temperature and salinity are differently correlated in surface and bottom layers, indicating different mechanisms which govern their variability. Trends in temperature are large (up to 6 °C over 100 years), significant through the area and not sensitive to the sampling interval and time series length. In contrast, trends in salinity are largely weak and insignificant and depend on the time series length. The warming of the area is stronger during spring and summer. Such large temperature trends and their spatial variability indicate substantial changes in the thermohaline circulation in this area known as a dense water formation site, with a potential to affect biogeochemical and ecological properties of the whole Adriatic Sea.

Ivica Vilibić et al.
Interactive discussion
Status: final response (author comments only)
Status: final response (author comments only)
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
[Login for Authors/Topic Editors] [Subscribe to comment alert] Printer-friendly Version - Printer-friendly version Supplement - Supplement
Ivica Vilibić et al.
Ivica Vilibić et al.
Total article views: 233 (including HTML, PDF, and XML)
HTML PDF XML Total BibTeX EndNote
164 65 4 233 5 2
  • HTML: 164
  • PDF: 65
  • XML: 4
  • Total: 233
  • BibTeX: 5
  • EndNote: 2
Views and downloads (calculated since 18 Feb 2019)
Cumulative views and downloads (calculated since 18 Feb 2019)
Viewed (geographical distribution)  
Total article views: 144 (including HTML, PDF, and XML) Thereof 144 with geography defined and 0 with unknown origin.
Country # Views %
  • 1
No saved metrics found.
No discussed metrics found.
Latest update: 18 Jul 2019
Publications Copernicus