Interactive comment on “Frictional interactions between tidal constituents in tide-dominated estuaries” by Huayang Cai et al.

J. Dronkers (Referee)
jobdronkers@gmail.com

Received and published: 16 May 2018

In this article an analytical solution of the tidal equations is presented to study the interaction of different tidal constituents in the Spanish Guadiana and Guadalquivir estuaries. The solution is based on a method developed by Godin (1999) and Dronkers (1964) for dealing with the non-linear friction term. Different tidal constituents derived from long-term tidal records along both estuaries are compared with amplitudes and phases of these constituents given by the analytical model. Observations and model results are in fair agreement. The article is well written and well organised.

There is probably an error in figure 9; the damping numbers (as defined in table 1) do not match the x-dependence of the amplitudes of figure 8. This is repeated in
the corresponding discussion (lines 320-327). When comparing figures 6 and 8, the
damping of M2 tide in the Guadalquivir appears a bit stronger than in the Guadiana,
but not an order of magnitude stronger.

The paper can be further improved by adding some clarifications concerning the fol-
lowing points:

1. River discharge is not mentioned at all in the paper. The influence is probably minor
in the major part of the estuary, but river discharge could play a role near the sill at the
upper end of the estuary, where the tidal velocities go to zero.

2. Close to the sill the tide has the appearance of a standing wave; this gives an almost
infinite tidal wave celerity. Tidal wave celerity does not make much sense in this region.

3. The Chebyshev coefficients are the coefficients of the expansion of \(\cos(nx) \) in pow-
ers of \(\cos(x) \).

4. It should be mentioned that formula Eq. 12 gives a reasonable approximation only if
the diurnal tides are much smaller than the semidiurnal tides.

5. The diurnal tides are much less damped than the semidiurnal tides. Apparently,
the effects of frictional damping and channel convergence cancel approximately. This
might be discussed more clearly in the paper.

6. The sensitivity of the results to the non-linear frictional interaction between the tidal
constituents, being the central theme of the paper, should be discussed more explicitly.
Figures 6 and 8 show the combined results of friction, channel convergence and tidal
wave reflection. A figure might be added, for example, in which results with and without
this frictional interaction are compared.