
1 

 

High-resolution in situ measurements of phytoplankton 

photosynthesis and abundance in the Dutch North Sea 

 
Hedy M. Aardema1,2, Machteld Rijkeboer1, Alain Lefebvre3, Arnold Veen1, and Jacco C. Kromkamp4 

1Laboratory for Hydrobiological Analysis, Rijkswaterstaat (RWS), Zuiderwagenplein 2, 8224 AD Lelystad, The Netherlands  5 
2Department of Climate Geochemistry, Max Planck Institute for Chemistry, Hahn-Meitner-Weg 1, 55128 Mainz, Germany 
3Ifremer, Laboratoire Environnement et Ressources, BP 699, 62321 Boulogne sur Mer, France 
4Department of Estuarine and Delta Systems, NIOZ Royal Netherlands Institute for Sea Research and Utrecht University, P.O. 

box 140, 4400 AC Yerseke, The Netherlands 

 10 

Correspondence to: Hedy M. Aardema (hedy.aardema@mpic.de),  

 

Abstract. Marine waters can be highly heterogeneous both on a spatial and temporal scale, yet monitoring is currently based 

on low-resolution methods leading to potential undersampling in time and space. This study explores the potential of two high-

resolution in situ methods for monitoring of phytoplankton dynamics; Fast Repetition Rate fluorometry (FRRf) for information 15 

on phytoplankton photosynthesis and productivity and scanning flowcytometry (FCM) for information on phytoplankton 

abundance and community composition. These instruments were deployed during four cruises on the Dutch North Sea in April, 

May, June and August of 2017. The high-resolution methods were able to visualize both the spatial and seasonal variability of 

the phytoplankton community in the Dutch North Sea. Spectral cluster analysis was applied to objectively interpret the 

multitude of parameters and visualize potential spatial patterns. This resulted in identification of biogeographic regions with 20 

distinct phytoplankton communities, which varied per cruise. Our results clearly show that the sampling based on fixed stations 

do not give a good representation of the spatial patterns, showing the added value of our approach. Still, to fully exploit the 

potential of the tested high-resolution measurement set-up, some major improvements can still be made. Among which the 

most important are; accounting for the diurnal cycle in photophysiological parameters concurrent to the spatial variation, better 

predictions of the electron requirement for carbon fixation to estimate gross primary productivity, and the identification of 25 

more flowcytometer clusters with informative value. Nevertheless, the richness of additional information provided by high-

resolution methods such as the FCM and FRRf, can improve existing low-resolution monitoring programs towards a more 

precise and ecosystemic ecological assessment of the phytoplankton community and productivity. 
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1 Introduction 

The Dutch North Sea is of major socio-economic importance because of its close proximity to densely populated areas and the 

intensive utilization for shipping, fishing, sand extraction and development of offshore windmill farms. Due to this high 

anthropogenic pressure, the North Sea has undergone considerable biogeochemical and biological changes in the past decades 

(Burson et al., 2016; Capuzzo et al., 2015 and 2017). For example, nutrient load and stoichiometry were fluctuating 5 

substantially due to inflow of wastewater and agricultural run-off and subsequent mitigation efforts (Burson et al., 2016; 

Philippart et al., 2000). Additionally, water clarity in large parts of the North Sea decreased during the 20 th century (Capuzzo 

et al., 2015). These abiotic changes affect primary productivity and community composition shifts throughout the trophic 

levels, with large implications for ecosystem functioning and fisheries production (Capuzzo et al., 2017; Burson et al., 2016). 

Over time, large changes are expected due to the planned energy transition and under the impact of climate change. Anticipated 10 

climate change effects include ocean acidification, sea level rise, and increasing temperatures. Already, the North Sea is 

warming more rapid than most other seas (Philippart et al., 2011).  These changing environmental conditions will have a big 

impact on marine biogeochemistry and thereby on phytoplankton community composition and primary productivity 

(Sarmiento et al., 2004; Behrenfeld et al., 2006; Marinov et al., 2010). Changes in phytoplankton community composition and 

primary productivity affect the entire ecosystem and global biogeochemical cycles (Montes-Hugo et al., 2009; Falkowski et 15 

al., 1998; Schiebel et al., 2017). Systematic and sufficient monitoring of these changes is of crucial importance to recognize 

threats, and, once identified as such, develop mitigation actions. 

 

Although phytoplankton community composition and productivity can be highly variable on a spatial and temporal scale, 

governmental monitoring still consists mainly of low-resolution measurements (Baretta-Bekker et al., 2009; Kromkamp and 20 

van Engeland, 2010; Cloern et al., 2014; Rantajarvi et al., 1998). Currently, biological monitoring of phytoplankton in the 

Dutch North Sea is dictated by the requirements set by OSPAR and the EU Marine Strategy Framework Directive (MSFD 

2008/56/EC). It consists of HPLC analysis of Chl a concentration and microscopy counts of Phaeocystis cells and, at some 

stations, coccolithophores or toxic dinoflagellates. Sampling points were reduced from almost 70 in 1984 to less than 20 today, 

while strong seasonal patterns, high riverine input, and tidal forces make the Dutch North Sea a region with high spatiotemporal 25 

variability. Modern automated flow-through systems offer the opportunity to record the surface ocean with high spatial and 

temporal resolution, which has potential to be an effective addition to monitoring programs. Such high-resolution methods are 

well established in physical oceanography but for biological parameters, the implementation has been lacking. This is mostly 

due to the complicated interpretation of biological parameters, resulting in high uncertainties in the current global estimates of 

net primary productivity (Silsbe et al., 2016). Automated flow-through methods are not able to replace some more detailed 30 

low-resolution measurements, but their higher spatial and temporal resolutions provide the possibility to identify short-lived 

events and act as an early warning system. Additionally, because the measurements are done in situ, it is possible to acquire 

information on rates of living organisms and samples unaffected by transport, storage or conservation. Two non-invasive, 
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high-resolution methods that can be used in phytoplankton monitoring programs are scanning flowcytometry (FCM) for 

information on phytoplankton abundance and community composition and Fast Repetition Rate fluorometery (FRRf) to give 

information on phytoplankton photophysiology. Scanning flowcytometry is a method for counting and pulse-shape recording 

of phytoplankton cells resulting in a high number of parameters on size, fluorescence and scattering properties per algal cell. 

Based on these characteristics cluster analysis allows for division into groups of similar pigment characteristics and size classes 5 

(Thyssen et al., 2015). The FRRf uses active fluorescence to gain insight into phytoplankton photophysiology. This technique 

is an alternative to the traditional production-light curves (PE-curves) by measuring the photosynthetic electron transport rate 

(or gross photosynthesis) at increasing ambient light levels (Suggett et al., 2009a; Silsbe and Kromkamp, 2012). Electron 

transport rate per unit volume is estimated by a series of single turnover light flashes that cumulatively close all photosystems 

(Kromkamp and Forster, 2003; Suggett et al., 2003). This single turnover technique allows for calculation of the effective 10 

absorption cross-section and, in combination with an instrument specific calibration coefficient, the absorption coefficient and 

amount of reaction centres per volume (Kolber et al, 1998; Kromkamp and Forster, 2003; Oxborough et al., 2012; Silsbe et 

al., 2015). Electron transport rate per unit volume is used to estimate gross primary productivity (Kromkamp et al., 2008; 

Smyth et al., 2004; Suggett et al., 2009a). These two methods are supplementary, because the interaction of phytoplankton 

with their environment is always a sum of the community composition and their physiology. For instance, if waters become 15 

more turbid, phytoplankton can acclimate by increasing their effective absorption cross section, but it could also lead to a shift 

in community composition toward species with higher light use efficiency (Moore et al., 2006).  

 

The aim of this study is to test the suitability of these two high-resolution methods to be developed as novel phytoplankton 

monitoring method. The two high-resolution methods, a flowcytometer and a FRR fluorometer, were deployed concurrently 20 

on four 4-day cruises in April, May, June and August to meet a wide range of environmental conditions and phytoplankton 

community states. These measurements allow for quantification of seasonal and mesoscale spatial patterns in phytoplankton 

abundance, photophysiology and gross primary production. In this paper we provide an overview of the acquired results, use 

a spectral cluster analysis to visualize spatial heterogeneity and evaluate the potential of these methods to optimize current 

monitoring programs. 25 

 

 

 

 

 30 
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2 Methods 

2.1 Study site and sampling 

The Dutch North Sea is a shallow tidal shelf sea in the southern part of the North Sea. The main water flow is northward. 

Atlantic water enters the North Sea from the south via the Channel and from the northeast where it curves around Scotland. 

Both currents meet north of the Dutch coast forming the Frisian Front. For a detailed description on the North Sea physical 5 

oceanography, see Sündermann and Pohlman (2011). Along the Dutch coast, high river input from especially the Rhine River 

decrease the salinity and loads the coastal zone with high nutrient concentrations (Burson et al., 2016). Anthropogenic pressure 

is high in the Dutch North Sea resulting in a history of large shifts in nutrient concentrations and water clarity (Capuzzo et al., 

2015; Burson et al., 2016). 

The monitoring of the Dutch North Sea is performed by the Dutch government (Rijkswaterstaat) in a monitoring program 10 

called MWTL (Monitoring Waterstaatkundige Toestand des Lands, freely translated as ‘Monitoring of the status of the 

governmental waters of the country’). The location of the sampling stations of the program are organized along transects (Fig. 

1). The stations are sampled between March and October with a frequency of every two or four weeks, dependent on the 

transect. 

 15 

 

Figure 1: Sampling locations of the MWTL monitoring program referred to in this study. The stations are named according to the transect 

(Terschelling, Noordwijk and Walcheren), followed by the amount of kilometres from the coast (labels next to sampling points). The boundaries of 

the Exclusive Economic Zone (EEZ) are indicated by the grey dotted lines and the Dutch EEZ is coloured light blue. The locations of three major 

infows to the Dutch North Sea are named at the corresponding locations (Rhine river, Dutch Delta and the Wadden Sea). Insertion visualizes the 20 
location of the Dutch North Sea in a broader map of Europe. 
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In 2017, four 4-day sampling surveys (10-13 April, 15-18 May 12-15 June and 14-17 August), were conducted for the JERICO-

NEXT project on board the RV Zirfaea during their regular monitoring cruises on the Dutch North Sea. To assess the 

heterogeneity of the Dutch North Sea and the benefits associated with high-resolution monitoring the four cruises were 

conducted in different months (April, May, June and August), thereby aiming to cover different seasons and stages of the 5 

phytoplankton bloom (Baretta-Bekker et al., 2009).  

 

On the RV Zirfaea the water inlet was situated approximately 3.5 m below sea surface level. From the water inlet the sample 

water, with a flow rate of approximately 24 litres per minute, was split towards 1) a flow-through -4H-JENA Ferrybox (-4H- 

JENA engineering GmbH, Germany) equipped with an FSI Excell® Thermosalinograph (Sea-Bird Scientific, USA) to 10 

measure temperature and salinity and a SCUFA™ Submersible Fluorometer (Turner Designs Inc., USA), and 2) at a flow rate 

of 1 L per minute towards a 230 cm3 flow through sampling container where water was cleared from bubbles and sand. The 

time from water inlet to sampling chamber was approximately 2 minutes. A FastOcean Fast Repetition Rate fluorometer 

(FRRf) with Act2-based laboratory flow through system (Chelsea Technologies Group Ltd, UK) and a Cytosense scanning 

flowcytometer (Cytobuoy BV, the Netherlands) automatically sampled from the sampling unit every 30 minutes. Since the 15 

average speed of the ship was 8 knots, the average spatial resolution of FCM and FRRf measurements was on average 7.5 

kilometres. The Ferrybox sensors stored data every minute. During the cruises the high-resolution methods (FRRf, FCM and 

Ferrybox) were combined with lower resolution methods, consisting of measurements at 13 to 19 stations. At these stations 

surface samples were taken for nutrient and chlorophyll a analyses (see 2.2 chemical analyses) using a rosette sampler equipped 

with a CTD and Niskin bottles. 20 

 

2.2 Chemical analyses 

Samples for nutrient analyses were filtered over Whatmann GF/F filters and kept frozen until analyses. The analyses of 

ammonium (NH4
+), nitrite (NO2

-), nitrate (NO3
-), ortho-phosphate (PO4) and silicate (Si) concentrations were conducted by 

the Rijkswaterstaat laboratory (the Netherlands) according to ISO 13395, 15681, 16264 using a San++ Analyzer (Skalar 25 

Analytical B.V., the Netherlands). In the RWS internal protocol, nitrite+nitrate is measured by first reducing nitrate to nitrite 

using a cadmium/copper column and addition of ammoniumchloride as a buffer. Thereafter, sulphanilamide, α-naphthyl 

ethylenediamine dihydrochloride and phosphoric acid are added and the extinction at 540 nm compared to a NaNO2 standard. 

For measurement of Ammonium concentrations first EDTA was added to bind Calcium and Magnesium. Then, sodium 

salicylate, sodium nitroprusside and sodium hypochlorite were added and the extinction at 630 nm compared to a NH4Cl 30 

standard. Ortho-phosphate was measured by adding molybdate reagent and ascorbic acid to the sample and led through an 

oilbath at 37 ± 2 °C. Followed by measuring the extinction at 880 nm and comparing to a standard. Silicate concentration was 

measured by subsequent addition of molybdate reagent, oxalic acid and ascorbic acid. The silicate concentration was then 
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determined by measuring the extinction at 810 nm and comparing to a silicate standard. The detection limits of the nutrient 

analyses were: NO3NO2: 0.7 µM, Si: 0.36 µM and PO4
3-: 0.03 µM. 

 

Chlorophyll a concentration (hereafter Chl a) was determined by filtering over Whatmann GF/C filters and freezing the filter 

at -80 ºC. The Chl a was extracted in 20 ml 90% acetone and centrifuged for 15 minutes with glass pearls (1.00-1.05 mm) 5 

using a Bullet Blender Tissue homogenizer (Next Advance, Inc., Troy, USA) under cooling of solid CO2. The extract was 

analysed in duplicates using Ultra High Performance Liquid Chromatography (UHPLC). The calibration of the UHPLC system 

is performed every analysis day by making a 12-point standards calibration curve calculated using quadratic regression with 

weighting method 1/A to better distinguish smaller peaks (R2>0.995). The injection volume was 20 µl, unless the concentration 

was below the lowest standard, in which case a second injection of 40 µl was reanalysed. The analysis was conducted by the 10 

MUMM laboratory (Belgium) using according to RWS analysis protocol A200. Quality control was performed by the RWS 

laboratory (The Netherlands). 

 

2.3 High frequency methods 

2.3.1 Variable fluorescence 15 

Variable fluorescence was measured with a FastOcean Fast Repetition Rate fluorometer (FRRf) and Act2-based laboratory 

system (Chelsea Technologies Group Ltd, UK). Temperature was controlled by connecting a Lauda ecoline cooler (LAUDA-

Brinkmann, LP., USA) to the water jacket of the Act2 system. 

The acquisition protocol consisted of 100 excitation flashes with a flash pitch of 2 µs and 40 relaxation flashes with a flash 

pitch of 60 µs. Excitation flashes were performed with the blue LED (450 nm) and strength of the LEDs was automatically 20 

adjusted to the phytoplankton concentration by the manufacturer’ FAstPro software. A loop of simultaneous blue and green 

flashes (450 nm+530nm) was performed after the acquisition loop of only blue LEDs in case the blue LEDs were not able to 

reach saturation (for instance with high cyanobacteria concentrations), but as this was not the case, only the parameters 

measured by blue LEDs were used for further calculation. The sequence was repeated 20 times with a sequence interval of 

100 ms. The sample was refreshed before each fluorescent light curve (FLC) by flushing for 60 seconds and kept well-mixed 25 

by “flushing” for 200 ms between acquisition loops.  

The FLC protocol consisted of 14 light steps of 100 s, of which the light intensity was automatically adjusted to get the optimal 

FLC shape based on the previous light curve. A pre-illumination step (55 seconds on 12 µmol photons m-2 s-1) was included 

before the FLC to low light acclimate the phytoplankton and to relax non-photochemical quenching (NPQ) of diatoms and 

other chlorophyll a-c algae as they stay in the light activated state in the dark (Goss et al., 2006). After each light step, 30 

measurements were made in the dark for 18s to retain a value for F0’ (minimal fluorescence in light acclimated state). The data 
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were corrected for the background fluorescence by taking sample blanks multiple times per day by filtration over a 0.45 µm 

filter and subtracting the last determined background fluorescence from the sample fluorescence. 

 

An overview of the derived photosynthetic parameters can be found in Table 1. To derive values for the maximum 

photosynthetic electron transport rate (Pmax), minimum saturating irradiance (Ek) and the light utilisation efficiency (α) the 5 

relative electron transport rate (rETR) of the samples was fitted to the exponential model of (Webb et al. 1974), after 

normalizing the data to the irradiance as described by (Silsbe and Kromkamp, 2012): 

𝐹𝑞
′/𝐹𝑚′ =  

𝑃𝑚𝑎𝑥(1−exp(
−𝐸
𝐸𝑘

))

𝐸
          (1) 

 

where E is the irradiance in μmol photons m-2 s-1, Fq’/Fm’ the effective PSII quantum efficiency, α is the initial slope of the 10 

rETR vs irradiance curve and Ek is the light saturation parameter (in μmol photons m-2 s-1). The relative maximum rate of 

photosynthetic electron transport (Pmax) was calculated as:  

𝑃𝑚𝑎𝑥 =  𝐸𝑘 ×  𝛼       (2) 

 

Table 1: The derived photosynthetic parameters used in the text (see Oxborough et al. (2012) and Silsbe et al. (2015) for more 15 
information). Variables used in equation 1-8 are not included but discussed in the text. 

 Description unit 

Parameters derived from fluorescence induction curve 

F0 

Minimum fluorescence, measured at zeroth  flashlet of an FRRf 

single turnover measurement when all PSII reaction centers 

(RCII) are open. Estimate for chlorophyll a concentration. 

Dimensionless 

Fm 
Maximum fluorescence, reached at nth  flashlet of an FRRf single 

turnover measurement when all PSII reaction centers are closed. 
Dimensionless 

1/τ Rate of re-opening of a closed RCII  ms-1 

σPSII Effective absorption cross section of PSII photochemistry nm2 PSII-1 

Parameters calculated from parameters derived from fluorescence induction curve 

JVPII PSII charge separation rate per unit volume (see eq. [3]) μmol electrons m-3 h-1 

Fv/Fm Quantum efficiency of PSII under dark conditions (see eq. [4]) Dimensionless 

aLHII Absorption coefficient of PSII light harvesting (see eq. [5]) m-1 

[RCII] Functional PSII reaction centers per volume (see eq. [6]) nmol RCII m-3 

Parameters derived from Fluorescence light curve (FLC) 

αPSII Initial slope of the FLC, an estimate of affinity for light μmol electrons (μmol photons) -1 

Ek Minimum saturating irradiance of fluorescence light curve μmol photons m-2 s-1 

Pmax Maximum photosynthetic electron transport rate μmol electrons m-2 s-1 

Parameters calculated from parameters derived from fluorescence light curve and irradiance 

Surface GPP 
Surface Gross Primary Productivity (see eq. [3]) calculated based 

on the FLC-parameters and incoming irradiance. 
µg C L-1 h-1 
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The PSII flux in μmol electrons m-3 h-1 was calculated as the product of the effective PSII efficiency (Fq’/Fm’), the optical 

absorption cross section of the light harvesting pigments of PSII (aLHII) and the irradiance (E): 

 

𝐽𝑉𝑃𝐼𝐼( 𝑖𝑛 𝜇𝑚𝑜𝑙 𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑛𝑠 (𝑃𝑆𝐼𝐼 𝑚−3) ℎ−1) = 𝐹𝑞
′ 𝐹𝑚′⁄ ∗ 𝑎𝐿𝐻𝐼𝐼 ∗ 𝐸    (3) 5 

where  

𝐹𝑞
′/𝐹𝑚

′
=

𝐹𝑚
′−𝐹′

𝐹𝑚
′        (4) 

and 

                   𝑎𝐿𝐻𝐼𝐼 (𝑖𝑛 𝑚−1) =
𝐹0∗𝐹𝑚

𝐹𝑚−𝐹0

∗ 𝐾𝑎                (5) 

 10 

Ka (m-1) is an instrument specific factor necessary for obtaining absolutes rate of photosynthetic transport (see Oxborough et 

al. (2012) and Silsbe et al. (2015) for more information). The amount of reaction centres per cubic metre ([RCII]) was 

calculated as 

      [𝑅𝐶𝐼𝐼] (𝑖𝑛 𝑛𝑚𝑜𝑙 𝑚−3) = 𝐾𝑎 ∗
𝐹0

𝜎𝑃𝑆𝐼𝐼
            (6) 

 15 

for more information on the calculation of [RCII] and aLHII see Oxborough et al. (2012) and Silsbe et al. (2015). 

QA reoxidation or rate of re-opening of a closed RCII was calculated as 1 divided by the time constant of re-opening of a closed 

RCII with an empty QB site (τES) in ms-1. 

 

Standardized daily anomalies (Z-scores) were calculated for the photophysiological parameters as: 20 

𝑍 − 𝑠𝑐𝑜𝑟𝑒 =
𝑥−𝑑𝑎𝑖𝑙𝑦 𝑚𝑒𝑎𝑛(𝑥0…𝑥24)

𝐷𝑎𝑖𝑙𝑦 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛(𝑥0…𝑥24)
     (7) 

 Partial days were excluded because this could potentially offset the daily mean and standard deviation. 

 

Gross Primary Productivity (GPP) was estimated by fitting JVPII in μmol photons m-3 h-1 to equation 1 (the exponential 

model of Webb et al., 1974) to derive a volumetric Pmax and α. GPP in µg C L-1 h-1 was then calculated using equation 1 and 25 

incident surface irradiance. To avoid effects of changing incident surface irradiance (Esurface) on the spatial pattern and to be 

able to compare GPP between regions we used monthly average surface irradiances (Esurface) in our calculations of primary 

productivity. From 2010-2016 irradiance (400-700 nm) was measured at the roof of the NIOZ building in Yerseke using a 

LI-190 quantum PAR sensor and hourly averages stored using a LI1000 datalogger. Esurface was then calculated by averaging 

all irradiance data from the years 2010-2016 for the respective month. The primary productivity in electrons units was 30 

converted to carbon units by assuming 6 moles of electrons were required to fix one mole of carbon, based on a study in the 

adjacent Oosterschelde and Westerschelde estuaries (Kromkamp et al., in prep.). 
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2.3.2 CytoSense scanning flowcytometry 

Single cell measurements of the phytoplankton community were conducted using a bench-top scanning flowcytometer 

(Cytobuoy BV, the Netherlands) equipped with two lasers (488 nm and 552nm; 60mW each). Both laser beams were ca. 5 µm 

high and 300 µm wide and were focussed on the same spot in the middle of the flow-through chamber. The speed of the 

particles was ca. 2.2 m s-1. The system contained 3 fluorescence detector channels separating fluoresced wavelengths of 550-5 

600 nm (FLY; Phycoerythrin), 600-650 nm (FLO;  Phycocyanin) and above 650 nm (FLR; chlorophyll a). Additionally, the 

Forward light Scatter (FWS) and Sideward light Scatter (SWS) of all particles was measured. The FCM was equipped with a 

double set of detectors (PMT’s) for each of the three fluorescence channels to increase the dynamic range (Rutten, 2015). Per 

cell the pulse shape recording and the parameters (FWS, SWS, FLR, FLO and FLY) plus their affiliates (length, total and 

maximum values) were recorded and saved. The instrument was checked daily for drift using 3 µm Cyto-CalTM 488 nm 10 

alignments beads (Thermo Fisher Scientific Inc., USA). Additionally, the FCM was equipped with an Image-in-flow camera 

to take pictures of the nano- and micro-phytoplankton. This allows for linking pulse shape recordings to microscopy results 

and thereby identification of represented phytoplankton groups in respective clusters. 

 

Phytoplankton cells were clustered based on the pulse shape recording of the individually scanned phytoplankton. In this paper 15 

we discriminate the phytoplankton groups based on their size (pico, nano and micro) and Orange/Red fluorescence ratio 

(hereafter O/R ratio; Table 2). The chosen cluster criteria were based on expert judgement (SeaDataNet, 2018) and 

corresponding to other studies (Sieburth et al., 1978; Vaulot et al., 2008). The clustering was done by the software Easyclus 

1.26 (ThomasRuttenProjects, The Netherlands) according to these criteria. Noise, air bubbles and other potential outliers were 

removed. Size was calculated based on the length FWS. Due to the speed acceleration of the particles in the sheath fluid of the 20 

FCM the organisms will flow along their long axis, which makes the FWS a good estimate of the length of the particles. We 

obtained a linear relation between Length FWS and measured length of diverse phytoplankton species, having an angle of 

inclination of almost 1 and R2 =0.98 (Rijkeboer, 2018). For organisms smaller than 5 µm there may be some deviation from 

this relationship due to the width of the laser beam (which is 5 µm).  

 25 

Table 2: The phytoplankton groups distinguished in the current study.  

Name 

Cluster criteria Main corresponding taxonomic 

group(s) Length FWS O/R-ratio 

Pico-Red <4 µm* <1 Pico-eukaryotes 

Pico-Synecho <4 µm* >1 ynechococcus 

Nano-Crypto  4-20 µm >1 Cryptophycea 

Nano-Red 4-20 µm <1 
Diatoms,Haptophytes, 

Dinoflagelates 

Micro-Red >20 µm <1 
Diatoms,Haptophytes, 

Dinoflagelates 

 *In june <6 µm 



10 

 

2.4 Data analysis 

Outliers of the complete dataset were removed after visual inspection of pairplots made with the pairplot function of the 

HighstatLib.V4 script (Zuur et al., 2009). For the FRRf data, the fitted FLC curves were visually inspected for a good fit and 

removed based on expert judgement, which led to removing 1% to 7% of the FLC fits. Especially at low biomass FLCs became 

noisy, therefore a minimum fluorescence signal was set for calculations of photosynthetic parameters. Below this blank 5 

corrected instrument-specific fluorescence signal Fq’/Fm’ became noisy and often reached above the biologically unlikely limit 

of 0.65 (Kolber and Falkowski, 1993). The datasets of the high-resolution measurements (FRRf, FCM and Ferrybox) were 

linked using corresponding timestamps. When multiple measurements were performed within one FLC, the average was used.  

To find regions with similar phytoplankton communities, data was spectrally clustered using the uHMM R package (Poisson-

caillault and Ternynck, 2016) in the statistical software R (version 3.4.1, R Core Team, 2017). The package default settings 10 

normalize data before clustering, and automatically find the number of clusters based on spectral classification and the 

geometry of the data. This new methodology is more robust than the classical hierarchical and k-means technics (Rousseeuw 

et al., 2015). Phytoplankton parameters were first tested for collinearity and predictors with a variance inflation factor (VIF) 

over 6 were removed (Zuur et al., 2009; see supplementary material for pairplots). This left for the cluster analysis FCM-

parameters Pico-red, Nano-red, Micro-red and Synechococcus and the FRRf-parameters σPSII, Fv/Fm, aLHII, 1/τ, Ek.Datapoints 15 

were then per cluster labelled and plotted on a map to visually identify regions. Principal Component Analyses (PCA) were 

performed to find which variables contributed most to the cluster results The PCA’s were based on correlation matrixes with 

scaled parameters to correct for unequal variances and was carried out with the prcomp() function in R (version 3.4.1, R Core 

Team, 2017). The PCA visualization was done using the supplemental R package factoextra (Kassambra and Mundt, 2017). 

Maps were made using QGIS v. 2.14.2 and other figures were made with ggplot2 in R (Wickham, 2009). 20 
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3 Results 

3.1 Abiotic conditions 

Environmental conditions in the Dutch North Sea are spatially heterogeneous and strongly influenced by seasonal dynamics. 

Sea surface temperature increases from 9.5 ± 1.0 ºC in April to 19.0 ± 0.6 ºC in August (supplementary table S1). Seasonal 

variations in salinity are small with highest monthly mean salinity in April (34.1 ± 1.8).Spatial variability of salinity is higher 5 

with river influx decreasing the salinity down to 26 in the coastal zone. The monthly average of turbidity does show seasonal 

variation and was higher in April (2.3 ± 3.0 NTU) in comparison to other months. This was reflected in the Kd values, which 

were also highest in April (0.39 ± 0.28 m-1; supplementary table S1). It needs to be noted that monthly averages are not 

completely comparable, because of differences in sampling route and stations (Fig. 3). 

 10 

Dissolved Inorganic Nitrogen (DIN; Nitrate+Nitrite+Ammonium) and silicate (Si) concentrations show both spatial and 

seasonal variability (Table 3). Spatially, two trends are distinguishable: a coastal-offshore gradient and a longitudinal gradient. 

The seasonal variability determines the strength and position of these spatial gradients. The coastal to offshore gradient moves 

shoreward from April to August and the southern stations are depleted earlier in the season in comparison to the more northerly 

stations. In April DIN and Si concentrations are on average higher and only potentially limiting (Si<1.8 μmol L-1, DIN<2 μmol 15 

L-1; Peeters and Peperzak et al. (1990) and references therein) in the most Southerly part of the Dutch North Sea (Walcheren 

transect) and at offshore stations (>70 km offshore west of the Netherlands, >135 km North of the Netherlands). In later 

months, DIN and Si limitations gradually moves towards the coastal zone. Stations closest to freshwater influx (Noordwijk 2 

and 10) become DIN and Si-limited later in the year (Table 3). The increased DIN concentration at the transect close to the 

Rhine outflow is absent seventy kilometers offshore (Noordwijk 70), suggesting that the Rhine water remained close to the 20 

coast.  

 

Phosphate concentrations were generally quite low and possibly limiting (ortho-phosphate PO4
3--<0.5 μmol L-1; Peeters and 

Peperzak et al, 1990). With exceptions in April north of Terschelling between 50 and 100 km offshore and in May at Noordwijk 

2, a region with high freshwater influx. In August phosphate concentrations recovered in the Southern part of the Dutch North 25 

Sea reaching up to 0.6 µM. For a table on the N:P ratios see the supplementary table S2. 

 

 

 

 30 
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Table 3: nutrient concentrations (µM) separated per month (April, May, June and August) and station. The stations are named 

according to name of the transects and the distance in kilometres from the coast (Fig. 1). Potentially limiting nutrient concentrations 

are shown in red (DIN<2 µmol L-1, Si<1.8 µmol L-1, PO4
3---<0.5 µmol L-1; Peeters and Peperzak et al, 1990). B.d: below detection 

limit. 

                DIN (µM)   PO4
3- (µM)   Si (µM) 

Station April May June August   April May June August   April May June August 

Walcheren 2 1.0 2.4 3.4 1.0   0.2 0.2 0.4 0.6   0.6 0.7 1.4 1.9 

Walcheren 20 1.2 3.1 1.1 b.d   0.1 0.1 0.3 0.3   b.d 2.7 0.5 2.0 

Walcheren 70 1.1 1.2 1.1 b.d   0.2 0.2 0.2 0.1   b.d 0.6 0.4 0.9 

               

Noordwijk 2 37.5 21.7 4.9 b.d   0.3 0.6 0.2 0.2   6.7 3.5 0.8 1.2 

Noordwijk 10 28.5 15.0 3.1 b.d   0.2 0.1 0.4 0.1   2.9 3.2 0.7 1.4 

Noordwijk 20 21.6 4.9 0.9 b.d   0.2 0.1 0.2 0.1   1.3 0.7 0.8 0.6 

Noordwijk 70 b.d 1.0 0.9 b.d   0.2 0.2 0.3 0.2   b.d 1.1 1.7 0.1 

                              

Terschelling 10 10.1 1.9 0.9 b.d   0.3 0.2 0.2 0.2   3.0 2.4 0.5 0.7 

Terschelling 50 8.9 b.d 3.4 2.8   0.5 0.2 0.2 0.3   4.6 1.7 2.4 5.0 

Terschelling 100 12.6 b.d 1.9 b.d   0.5 0.2 0.3 0.2   3.9 0.5 1.1 1.7 

Terschelling 135 1.6 0.8 0.9 b.d   0.4 0.1 0.1 0.3   2.0 0.8 0.9 1.8 

Terschelling 175 0.9 NA 1.0 b.d   0.2 NA 0.2 0.2   0.6 NA 0.5 b.d 

Terschelling 235 1.0 NA 0.9 b.d   0.2 NA 0.3 0.3   b.d NA 1.1 0.5 

 5 

 

 

 

 

 10 
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Figure 2: linear regression of the natural logarithms of Chl a concentration in µg L-1 as determined by HPLC (y-axis) and on the x-

axis the natural logarithm of; FCM-derived total red fluorescence (in relative fluorensence units (RFU), left panel) and FRRf-derived 

minimum fluorescence (F0 in RFU, right panel). Both FCM red fluorescence (p<0.01, adjusted R2=0.90) and the FRRF F0 (p<0.01, 

adjusted R2=0.66) are significant predictors for Chl a concentrations. The months (April, May, June and August) were a significant 5 
predictor of Chl a concentration for both the FRRf (p<0.05) and the FCM (p<0.01). The interaction between the x and y axis was 

only significant for the FCM data (p<0.05). 

 

3.2 Phytoplankton abundance and fluorescence 

High-resolution measurements of phytoplankton presence are based on either cell numbers (flowcytometers) or fluorescence 10 

(fluorometers, such as the “standard” chlorophyll sensors, FRRf, and some flowcytometers). Both parameters can yield 

contrasting results due to the wide range of phytoplankton cell sizes and species-specific Chl a content per cell (Falkowski and 

Kiefer, 1985; Kruskopf and Flynn, 2005). In this study this is clearly demonstrated by the higher phytoplankton average cell 

count in June in comparison to April, while the average fluorescence is higher in the latter (supplementary material; Fig. S1). 

This can be explained by the high relative abundance of pico-phytoplankton, which contributes little to total fluorescence.  15 

 

Both the FRRf and FCM provide significant predictors of HPLC-derived Chl a concentration (Fig. 2). When performing an 

ANCOVA with month as factorial predictor, natural logarithm transformations were necessary because of the highly unequal 

variances between months. The ANCOVA with the FRRf-derived F0 as Chl a predictor revealed that Chl a concentrations 

significantly differed per month (p<0.01) but not the slope, and that F0 was a significant predictor (p<0.01) of Chl a 20 

concentration (adjusted R2=0.66). Yet, the FCM estimate of Chl a concentration (TFLR) was a better predictor (p<0.01) with 

an adjusted R2 of 0.90. The ANCOVA with the FCM-derived TFLR as Chl a predictor resulted not only in a significant 

difference of the Chl a concentration per month (p<0.01) but also in a significantly different slope (p<0.05), suggesting that 

other predictors that differ per month are influencing the amount of fluorescence per Chl a molecule (Fig. 2).  
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Chl a concentration is a limited predictor of biomass because the Chl a concentration per cell is species-specific and subject 

to phenotypic acclimation to abiotic conditions (Falkowski and Kiefer, 1985; Kruskopf and Flynn, 2005). Therefore, the FRRf 

yields other biomass related proxies next to the minimum fluorescence, that allow for circumvention of the use of a chlorophyll 

a estimate to estimate primary productivity (Oxborough et al., 2012). These parameters are the total absorption coefficient in 5 

the water (aLHII in m-1) based on the absorption of the photosynthetic pigments associated with PSII and the amount of PSII 

reaction centres per volume ([RCII] in nmol RCII m-3). Both are very strongly correlated to F0, although the ratio of RCII to 

aLHII can vary by nature, affecting nPSII (Supplementary material; Fig. S3).  

 

3.3 Phytoplankton community composition 10 

Both cell numbers and the phytoplankton community composition showed high spatial heterogeneity in the Dutch North Sea 

in the sampled months (Fig. 3). In cell numbers, the pico-red group was always present as the dominating group. Because of 

their low total biovolume, they were contributing less to total red fluorescence. The relative abundance of picophytoplankton 

was generally higher offshore and in the northern part of the Dutch North Sea. The pico-Synechococcus group showed a strong 

numerical presence offshore in April and in most of the Dutch North Sea in June. The nano-red group was often a dominant 15 

group, both in sense of cell numbers as contribution to total red fluorescence. The nano-cryptophytes were never abundant in 

cell numbers, but contributed to the total red fluorescence in the northern offshore regions. The microphytoplankton group had 

a low numerical abundance and represented always less than 10% of the total cell counts. Yet in terms of red fluorescence they 

sometimes dominate, which occurred most frequently in coastal regions (Fig. 3). 

 20 

In April the northern part of the Dutch North Sea was numerically dominated by picoplankton whereas the southern part and 

the north coastal area of the Dutch EEZ were numerically dominated by nanophytoplankton. The taxons with high 

phycoerythrin content (Synechococcus and Cryptophycea) made up only a small proportion of the total phytoplankton 

community in April (generally less than 10%) and were most abundant in the norther part of the Dutch North Sea (Fig. 4e). 

Microphytoplankton abundance < 3%, and highest numbers were found close to the Dutch Delta and along the Noordwijk 25 

transect. The phytoplankton community in May is different from April and occurs very patchy (Fig. 3, second column). 

Offshore the highest percentages of picophytoplankton were observed (60-80%), whereas the highest percentage of 

nanophytoplankton was observed north of Terschelling 100 and in the coastal zone.  Between May and June the community 

composition shifted and phytoplankton cell numbers increased. Both groups of pico-phytoplankton (Synechococcus and Pico-

red) increase in relative abundance between May and June, while the nano-phytoplankton shows a strong decrease (Fig. 3). 30 

Highest abundance of pico-phytoplankton was observed offshore. The microphytoplankton is the largest contributor to red 

fluorescence in the coastal region, although this group does not increase in relative abundance in comparison to May (Fig. 3). 

In August the pico-phytoplankton was dominating the phytoplankton communities with an average contribution to total cell 
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numbers of over 80% and only slightly lower values were observed (but still > 70%) along the southern Dutch coast, where 

the abundance of nano-phytoplankton was higher. Micro-phytoplankton was hardly observed, but because of their high red 

fluorescence they contributed to total red fluorescence in coastal regions.  

 

 5 

 

 

 Figure 3: Relative phytoplankton community composition using FCM-derived total red fluorescence (first row; a-d) and cell 

numbers (second row, e-h) in April, May, June and August (from left to right). The groups are clustered according to table 2. 
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3.4 Photophysiology  

Photosynthetic parameters are sometimes highly correlated (Supplementary material; Fig. S3). The correlation of alpha and 

Fv/Fm, indicators for photosynthetic affinity and photosynthetic efficiency, were, as expected, perfectly correlated (r=1). The 

parameters derived from the PE-curve, Pmax and Ek, show high correlation. But surprisingly, α does not show any correlation 5 

with Ek. This suggests that the light affinity is not dependent on the level of irradiance where the PSII reaction centres become 

saturated, or that its value is obscured by nutrient limitation. As expected σPSII, is very strongly negatively related to nPSII (r=-

0.9); the larger nPSII, the smaller the number of pigment molecules associated with it. 

 

In April, the photophysiology of the phytoplankton communities in the Dutch North Sea showed low variability. The Fv/Fm 10 

values stayed above 0.5 in northern regions and above 0.4 in southern regions (Fig. 4a). The σPSII stayed in a narrow range 

between 2.5-4 nm2 PSII-1 (Fig. 4e). Ek in April showed more variability in comparison to the Fv/Fm and σPSII, without clear 

spatial patterns in offshore regions. In the coastal zone, the Ek is lower off the coast from Walcheren and higher off the coast 

from Noordwijk (Fig. 4i).  

 15 

In May photophysiological parameters of the phytoplankton communities in the Dutch North Sea were strongly heterogeneous 

with only smaller scale spatial patterns (Fig. 4b,f,j). Fv/Fm was in general much lower in May (0.1-0.5) than in April (>0.4) 

across most of the Dutch EEZ (Fig. 4b). The range in σPSII was larger in May in comparison to April (Fig. 4f). The σPSII was 

also higher across the Dutch North Sea, except from a small area near the coast of Noordwijk. A possible consequence of the 

outflow of the Rhine River. In the same region the Ek is high (> 450 μmol photons m-2 s-1), but in other regions where Ek is 20 

high this does not coincide with an increased σPSII. The Ek across the Dutch North Sea in May is heterogeneous without large-

scale spatial patterns. 

 

In June the photophysiology of the phytoplankton in the Dutch North Sea is still as heterogeneous as in May, but larger scale 

spatial patterns seem to occur. The Fv/Fm values recovered to above 0.4 in the coastal zone,  but not in offshore regions in the 25 

Southern North Sea. The Fv/Fm of the southern offshore phytoplankton, between Walcheren 70 and Noordwijk 70 (Fig. 1), 

remained lowest (<0.2; Fig. 4c). The σPSII was lower than in May, apart from the southern offshore region that remained higher 

(Fig. 4g). In a small region around Noordwijk 70 the phytoplankton community had a particularly low σPSII (<2.5 nm2 PSII-1) 

which did not present itself in anomalies in the other photophysiological parameters. The Ek in May was low in the Northern 

coastal zone and higher in offshore regions (Fig. 4k).  30 

 

In August the Fv/Fm recovered across the Dutch North Sea (Fig. 4d). The σPSII was high in northern offshore region, and 

comparable to June in the rest of the Dutch North Sea (Fig. 4h). The Ek shows some interesting variability in August. The 
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regions off the Noordwijk coast and the of the Wadden Island coast were sampled twice, on two different times. These double 

measurements resulted in strongly different Ek, suggesting that time is a more important predictor in comparison to spatial 

variability. 

 

To further investigate possible daily patterns we calculated standardized daily anomalies (z-scores). These show a clear diurnal 5 

trend in photosynthetic activity (Fig. 5). Fv/Fm is lowest during the middle of the day, while Ek, σPSII and 1/τ  peak during the 

day. As Ek is strongly correlated to Pmax (Fig. S3), a clear daily pattern is also present in the photosynthetic electron transport 

rate. 

 

Figure 4: Maps of the photophysiological parameters Fv/Fm (a-d), σPSII (e-h; in nm2 PSII-1) and Ek (i-l; in μmol photons m-2 s-1) per month (from left 10 
to right: April, May, June and August). For more details on the location see Fig. 1.  
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 10 

 

 

Figure 5: Standardized daily anomalies (z-scores) of Fv/Fm, Ek, σPSII and 1/τ   showing the diurnal trends in photophysiological data. 

On the x-axis the time of the day and on the y-axis the z-score. 

 15 

3.5 Gross primary productivity 

Gross primary productivity ranged from minimum 0.35 µg C L-1 h-1 in June to peak productivities of 602 µg C L-1 h-1 in the 

coastal zone in May (Fig. 6). The average GPP was highest in April and lowest in August. Monthly averages ranged from 116 

± 59 µg C L-1 h-1 in April and 8.7 ± 8.3 µg C L-1 h-1 in August, although these averages are not completely comparable due to 

different ship routes per month (Fig. 6). In April spatial heterogeneity in GPP was low. Highest rates in April were measured 20 

offshore (> 250 µg C L-1 h-1) and in the coastal regions close to the Wadden Islands (Terschelling 10 in Fig. 1). In May, the 

GPP is heterogeneous without clear spatial pattern. Most production rates stay below 30 µg C L-1 h-1, with local GPP peak 

rates over 600 µg C L-1 h-1 in the southern coastal zone.  In June the Dutch North Sea was on average lower than in May, and 

showed slightly more large-scale spatial patterning.  Highest values in June were observed (30-40 µg C L-1 h-1) northwest of 

Noordwijk. In August GPP was low throughout the Dutch North Sea with the majority of water-column productivity rates 25 

staying below 10 µg C L-1 h-1. In the southern coastal zone slightly higher rates were found, reaching up to 50 µg C L-1 h-1. 
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Figure 6: Gross primary productivity of the surface (a-d; in µg C L-1 h1)  per month (from left to right: April, May, June and August). 

Colors represent rates, where blue is low and red is high (see legend). 

 

3.5 Spatial clustering 5 

Strong collinearity between measured parameters was present. For spatial clustering these were removed based on the variable 

inflation factor (VIF>6; see supplementary material for pairplots), which resulted in removal of the photophysiological 

parameters Pmax, α, aLHII, nPSII, the FCM-parameter of the total red fluorescence and the GPP. From the five defined 

phytoplankton groups (Table 2), the nano-crypto group was not used in the clustering because of collinearity (VIF>6). The 

remaining variables were the abundance of the remaining four FCM-defined phytoplankton groups (Pico-Red, Pico-Synecho, 10 

Nano-Red and Micro-Red), the total O/R ratio and five photophysiological parameters (Fv/Fm, σPSII, 1/τ, [RCII], and Ek). For 

an overview of the collinearity between variables see the pairplots in the supplementary material.  

 

Spectral cluster analysis resulted in identification of two to four clusters in each cruise. Most of these clusters were spatially 

separated and can therefore be seen as regions with distinct phytoplankton communities (Fig. 7). In April the clustering resulted 15 

in three clusters with a clear spatial pattern. In the PCA the variables that contributed most to the first principal component 

were all biomass related; [RCII] and aLHII, related to the photosynthetic capacity per reaction center and per volume, and the 

abundance of the Nano-red group. The second principal component has photosynthetic parameters as two main contributors  
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 PC1 PC2 

σPSII 0.8 28.8 

Fv/Fm 13.7 0.6 

aLHII 18.7 3.4 

[RCII] 17.1 6.6 

1/τ 9.8 22.7 

Ek 3.9 13.8 

Pico-red 4.2 15.1 

Nano-red 16.9 0.0 

Micro-red 10.5 4.5 

Synechococcus 4.3 4.4 

Variance 

explained (%): 
45.6 19.3 

  

 

 PC1 PC2 

σPSII 0.1 36.7 

Fv/Fm 0.8 14.5 
aLHII 17.5 6.7 

[RCII] 20.4 1.6 

1/τ 4.4 7.5 

Ek 0.7 26.3 
Pico-red 18.5 0.4 

Nano-red 21.1 0.6 

Micro-red 16.4 1.4 

Synechococcus 0.0 4.3 

Variance 

explained (%): 
42.5 18.9 

 

 

 

 PC1 PC2 

σPSII 0.0 9.3 

Fv/Fm 27.6 0.1 

aLHII 20.9 8.7 

[RCII] 28.0 2.6 

1/τ 0.4 1.7 

Ek 3.7 3.9 

Pico-red 6.1 26.9 

Nano-red 2.9 16.9 
Micro-red 6.3 2.9 

Synechococcus 4.2 27.0 
Variance 

explained (%): 
29.1 18.7 

 

 

 

 PC1 PC2 

σPSII 12.1 9.9 

Fv/Fm 0.0 17.5 
aLHII 21.0 3.3 

[RCII] 25.8 0.0 

1/τ 0.2 20.6 

Ek 0.7 16.8 
Pico-red 0.3 11.8 

Nano-red 15.3 3.1 

Micro-red 22.9 0.4 

Synechococcus 1.8 16.7 

Variance 

explained (%): 
33.9 25.7 
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Figure 7: Overview of the spectral cluster analysis based on the non-collinear phytoplankton parameters (FCM: Pico-red, Nano-

red, Micro-red, Synechococcus. FRRf: σPSII, Fv/Fm, aLHII, 1/τ, Ek) separated per month (top to bottom: April, May, June and August). 

With on the left clusters visualized on maps and in the middle the bi-plots of the PCA of the data with confidence elipses per cluster 

(confidence 95%). In all graphics clusters are visualized by different colors as shown in the legend inset. Of the confidence elipses 

the border lines (and not the fill) correspond to the clusters. In the bi-plot overlapping conficence ellipses suggest a high similarity 5 
between groups while the size of the ellipse is a measure of variability within the group. On the right the table of the PCA analysis 

with contribution in % of the different variables, in bold the three variables that contribute most to the principal component. 

 

 

(σPSII and 1/τ; 51.5%). Cluster one covers most of the Northern part of the Dutch North Sea, and a small part of the Noordwijk 10 

transect to the coast. The bi-plot of the PCA shows that the first cluster is negatively correlated to the main contributors of PC1 

([RCII] and aLHII; Fig. 7), so this region consists a phytoplankton community with lower photosynthetic capacity per bulk and 

per volume. The coastal region is separated in two clusters, 2 and 3, with overlapping confidences ellipses (Fig. 7). The 

confidence interval of cluster 2 is larger than cluster 3, suggesting that the phytoplankton community in cluster 2 is more 

heterogeneous. Both clusters are positively correlated to the main contributors to PC1 ([RCII] and aLHII), meaning this clusters 15 

consists of a community with higher photosynthetic capacity per volume. 

 

In May the cluster analysis resulted in four different clusters, but without well-defined spatial pattern. The PCA biplots show 

that the confidence interval of cluster 5 overlaps most of the other clusters, indicating that this clusters has a weak support. Ek 

is negatively correlated with cluster 4 and σPSII, suggesting that cluster 4 contains low light acclimated algae. In contrast, in 20 

June only two clusters were found with a distinct separation between coastal and offshore phytoplankton communities. The 

PCA shows that the offshore phytoplankton community is consisting of a diverse phytoplankton community while the coastal 

phytoplankton community with high Fv/Fm and high aLHII and [RCII]. The four clusters identified in August are spatially 

separated, but with some complications (Fig. 7). Different spatial clusters were appointed to the same region visited within a 

two-day time span twice; in the northeastern coastal region and at the transect of Noordwijk. Both times, cluster 11 is one of 25 

the overlapping spatial clusters. Cluster 11 corresponds to only nighttime sampling periods and is defined by low Ek and low 

1/τ, indicative of a low light acclimated phytoplankton community. This suggests that cluster 11 is a temporal cluster instead 

of a spatial cluster. To test this we repeated the analysis for the month of August but only including the measurements 

performed within an 8 hour timeframe around noon (12:00±4h; see supplementary material Fig. S4). In this timeframe the 

southern coastal zone is distinct from the rest of the Dutch North Sea and corresponds to cluster 10 in the analysis of the 30 

complete dataset (Fig. 7d), so this cluster is defined by spatial variability. Cluster 12 and 13 are grouped together in the 12±4h 

timeframe as cluster 1. Cluster 11 is not recognized as cluster within the 12±4h timeframe, so seems indeed controlled by 

temporal rather than spatial variability. 
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4 Discussion 

The aim of this study was to investigate spatial and seasonal patterns in photophysiological parameters, photosynthetic activity 

and phytoplankton biomass and composition with high spatial resolution. If successful, the method employed here can be 

further developed as novel monitoring method to improve existing monitoring programmes towards a more precise and 

ecosystemic ecological assessment (OSPAR, MSFD). The high-resolution methods used in this study, the FRRf and FCM, 5 

were able to visualize both the spatial and seasonal variability of the phytoplankton community in the Dutch North Sea. The 

strong seasonal dynamics in the Dutch North Sea affect the spatial distribution and community composition of the 

phytoplankton community (Baretta-Bekker et al., 2009; Brandsma et al., 2011). The typical spring bloom was partly captured 

by the cruise of April; nutrient concentration were generally still high, photophysiology uniform with and primary productivity 

high. At both the cruises in June and August primary productivity was low. The typical second late summer bloom period was 10 

covered by the cruises of this study, but an onset later than August is not unusual (Baretta-Bekker et al., 2009). In June and 

August phytoplankton populations were N-limited in a large part of the Dutch North Sea. This affects the community 

composition: Philippart et al. (2007) concluded that nutrient shifts were weakly correlated with biomass and more strongly 

with community structure. Generally, it is assumed that nutrient limitation favours small cell size, because of the higher surface 

to volume ratio of smaller cells. Fluctuating nutrient concentrations favour larger cells due to their greater maximum uptake 15 

rate and storage capacity (Stolte and Riegman, 1995; Giannini and Ciotti, 2016; Philippart et al., 2000), and the shift towards 

smaller species observed here using FCM is thus in accordance with this theory. This impacts the carrying capacity of the 

ecosystem, as microphytoplankton is a better food source for higher trophic levels than picophytoplankton. Picophytoplankton 

is more involved in the microbial food web, with less trophic efficiency and low contribution to carbon export (le Quéré et al., 

2005). Flowcytometry is very suitable for such analyses. Even when species are identified by microscopy they are in analysis 20 

still grouped to size class (Philippart et al., 2007), a task the flowcytometer can do much faster. To understand the role of the 

phytoplankton in biogeochemical cyckes, the FCM clusters would ideally reflect taxonomic or functional groups, as calcifiers, 

silicifiers, DMS producers (such as Phaeocystis) and nitrogen fixers (le Quéré et al., 2005). The lack of identification of distinct 

clusters makes this sofar impossible. Other studies manually separate up to 10 phytoplankton groups with the same instrument 

(Marrec et al., 2018). These groups included Prochlorococcus, which is at the absolute limit of resolving capacity of the 25 

Cytosense FCM because of their small size and low fluorescence. They furthermore distinguished in the Pico-red between 

three groups based on FLO/FLR-ratio. They separated the nano-cryptophytes group two groups based on their orange 

fluorescence and included a microphytoplankton group with a size from 10 to 20 µm. These groups are still made up of many 

taxonomic genera and, apart from size, will not allow much for further interpretation of their role in the ecosystem or 

biogeochemical cycles. The same accounts for detection of nuisance phytoplankton; distinct clusters of toxic phytoplankton 30 

species are lacking. Although this will remain a challenge because toxicity in phytoplankton can differ within morphotypes 

and sometimes even differ per strain within a species (Tillman and Rick, 2003). But potentially, further research in 

flowcytometry can result in suspicious clusters to be flagged and further inspected by a specialist using microscopy. The 
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potential is certainly there, as much of the information retrieved by the FCM is still unexplored; the clustering is performed on 

totals (area under the peak) instead of the pulse-shape. This, in combination with more advanced camera options, may open 

up the possibility to further distinguish groups in the future. 

 

Biomass might be one of the most important parameters to understand phytoplankton dynamics, but its direct measurement is 5 

not possible using high-resolution methods. Chlorophyll a concentration is often used as an estimate for biomass, although the 

Carbon:Chl a ratio is dependent on abiotic conditions and species-specific phenotypic plasticity (Flynn, 1991, 2005; Geider et 

al., 1997; Alvarez-Fernandez and Riegman, 2014; Halsey and Jones, 2015). Red fluorescence gave a good estimate of 

chlorophyll a concentration, both using the FRRf (adjusted R2= 0.66) and FCM (adjusted R2=0.90). Both the FRRf and the 

flowcytometer estimate the chlorophyll a concentration based upon the fluorescence in the red spectrum after excitation in the 10 

blue spectrum. There are some slight differences in the optics, the FRRf excites with a 450 nm LED and measures the 

fluorescence at 682 ± 30 nm, while the FCM excites at 488 nm and filters the red fluorescence over a longpass 650 nm filter 

towards the red fluorescence detector. The smaller detection range of the FRRf detector is optimized around the maximum 

emission of PSII and limits contamination by PSI (Franck et al., 2002; Oxborough et al., 2012). The second difference is the 

fluorescent state of the photosystems, the strong laser of the flowcytometer can only measure the maximum fluorescence (Fm), 15 

which is a parameter more prone to quenching than the minimum fluorescence measured by the FRRf. Yet, the biggest 

difference concerns the method; where the flowcytometer measures the fluorescence per particle, the FRRf does only a bulk 

measurement. In a bulk measurement other particles in solution scatter the excitation and emission photons, plus the emitted 

fluorescence of the phytoplankton is subject to reabsorption, especially at higher biomass densities. The latter seems to have 

the most impact on chlorophyll a concentrations, as the fit of the flowcytometer derived red fluorescence is a better than the 20 

FRRf minimum fluorescence. Other studies that use the FCM to estimate chlorophyll a concentrations also showed good 

relationships, but find better fits using the bulk measurements using a fluorimeter (Thyssen et al., 2015; Marrec et al., 2018). 

The conversion to biomass may also be done from cell abundances. Some studies use the oversimplified assumption that all 

cells have a spherical shape and a constant C content per biovolume (Tarran et al., 2006). With the scanning flowcytometer it 

is also possible to estimate biovolume based on scattering properties of the cell, but this relationship appears to be taxon 25 

specific (Rijkeboer, pers. comm.). This relationship will be further explored by comparing the calculated biovolume based on 

the Image in Flow pictures and the flowcytometric properties of these phytoplankters. 

 

Phytoplankton biomass does not necessarily reflect primary productivity, as high grazing pressure can keep biomass low while 

production is high. This is clearly visualized by the lack of resemblance between patterns in cell numbers (Fig. 3 a-d) and 30 

primary productivity (Fig. 6). Fast Repetition Rate fluorometry offers insight into the light acclimation, light use efficiency 

and the primary productivity of the phytoplankton, but interpretation of photophysiological parameters is not straightforward 

and requires algorithms that are subject to constant revision (Oxborough et al., 2012; Lawrenz et al., 2013). One of the most 

commonly used parameters is Fv/Fm, the quantum efficiency of PSII. Fv/Fm decreases at limiting nutrient conditions or other 
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abiotic stressors (Suggett et al., 2009b; Kolber et al. 1988; Kolber and Falkowski, 1993; Beardall et al. 2001; Ly et al. 2014). 

In this study a large part of the Dutch North Sea shifted from nutrient sufficiency to nutrient limitation between April and May, 

which was reflected in the low efficiency of PSII (Fv/Fm; Fig. 4). The Fv/Fm recovered between May and June, which suggest 

that the phytoplankton adapted to nutrient limiting conditions (Kruskopf and Flynn, 2005). However, photophysiological 

parameters are also varying per taxonomic group; smaller taxa typically have lower Fv/Fm values and higher σPSII values (Kolber 5 

et al., 1988; Suggett et al., 2009b). Indeed, by flowcytometry we find that the biggest shift in community composition took 

place between May and June from a nanophytoplankton dominated community to a picophytoplankton dominated community. 

These findings demonstrate how flowcytometry and fast repetition rate fluorometry can supplementary improve ecosystem 

understanding.  

 10 

Regarding the use of photophysiology in a monitoring program, the diurnal variability is a factor to be aware of. Diurnal trends 

make extrapolation of rates obtained at a specific timepoint to daily rates difficult. Most photophysiological parameters we 

measured showed diurnal trends (Fig. 5). The diurnal trend is dictated by the phytoplankton cell cycle, a circadian oscillator 

and photophysiological response to varying irradiance (Suzuki and Johnson, 2001; Cohen and Golden, 2015; Schuback et al., 

2016). Phytoplankton uses photophysiological plasticity responses to minimize photodamage and optimize growth under 15 

fluctuating irradiance (Schuback et al., 2016; Behrenfeld et al., 2002). The diurnal variability is also reflected in the gross 

primary productivity estimations because also the electron requirement for carbon fixation is subject to diurnal variation 

(Schuback et al., 2016; Lawrenz et al., 2013; Raateoja, 2004). To interpret spatial variability separately from temporal 

variability and to provide a more reliable estimate of gross primary productivity, Schuback et al. (2016) suggest a correction 

with normalized Stern-Volmer quenching (NPQNSV), which needs further research. A monitoring program including 20 

photophysiology should account for diurnal variability, for example by using only measurements collected in a certain 

timeframe or the effect should be quantified by using a Lagrangian approach where the photosynthetic activity of the same 

population is followed during the day. 

 

The reliability of variable fluorescence as estimate of gross primary productivity is depending on many cell processes from 25 

the photon absorbance to carbon assimilation. The variable fluorescence reflects the first step of photosynthesis; the efficiency 

of which photons are captured and electrons produced and transferred. However, to interpret gross primary productivity in an 

ecological or biogeochemical meaningful way, the FRR units of electrons per unit time need to be converted to carbon units. 

Gross photosynthesis correlates well with photosynthetic oxygen evolution (Suggett et al., 2003), and multiple studies have 

shown good correlation between 14C-derived estimates of primary productivity and FRRf-derived estimates using a constant 30 

conversion factor (Melrose et al., 2006; Kromkamp et al., 2008). However, in reality this parameter is not a constant, as along 

the pathway from electron to carbon atom electrons are consumed by other cell processes (Flameling and Kromkamp, 1998; 

Halsey and Jones, 2015; Schuback et al., 2016). Therefore, a reliable GPP estimate in carbon units from FRR fluorometry 

requires more research and estimates provide relative rather than qualitative values. Despite its limitations the fact that the 
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method can measure in situ, with relatively little phytoplankton manipulation before measurement, makes the method 

promising. Calibration with other methods, such as concurrent C14 of C13 incubations, could help to better understand the 

processes from electron excitation to carbon fixation. However, it should be recognized that these types of measurements come 

with their own problems, and measure something in between net and gross primary productivity depending on the incubation 

time and growth rate of the phytoplankton (Halsey and Jones, 2015). So it remains a question which method is measuring the 5 

‘real’ primary productivity. Attempts to calculate primary productivity from flowcytometer data have also been made, which 

is actually based on the diurnal cycle in cell size caused by cell division (Marrec et al., 2018). Despite the limitations of GPP 

estimates by variable fluorescence, our results clearly show large spatial variability in gross primary production concurrent to 

the expected strong variability during the growth season. This spatial heterogeneity is not fully captured by sampling at the 

standard low-resolution monitoring stations, showing the added value of our approach. Primary productivity was highest in 10 

April, and relatively large values were also observed offshore, indicating that a low phytoplankton biomass does not necessarily 

means that primary production is low. Our GPP rates were based on the same electron requirement for C-fixation (Фe,C). 

However, this is a likely oversimplification as Фe,C is known to vary with abiotic conditions (Lawrenz et al., 2013) and the 

changes in nutrient conditions and temperature during the growth season are likely to affect GPP. This will be the topic of a 

future publication and we expect that the detection of several biogeographic regions will help us in predicting Фe,C.  15 

 

Biogeographic regions 

The applied automated cluster methods were a useful tool to roughly identify distinct phytoplankton communities or distinct 

biogeographic regions. The spectral clustering method used in this study was originally designed to detect phytoplankton 

blooms and understanding the involved dynamics (Rousseeuw et al., 2015; Lefebvre and Poisson-Caillault, in press). In this 20 

study this method was applied to identify different phytoplankton communities and observe spatial patterns. In some months, 

like April and June, it was indeed possible to identify regions with distinct phytoplankton communities. In other months, such 

as May, the clustering was not clearly regional but heterogeneous over the whole Dutch North Sea. A clear distinction between 

phytoplankton communities of the coastal zone and off-shore regions could be made in all months, except May. Unfortunately, 

the model was not able to automatically visualize all spatial heterogeneity. For instance, in April off the coast from Terschelling 25 

we found a distinct community with high cryptophyte abundance not resulting in a separate cluster. Additionally, temporal 

variation (i.e. day-night differences) was interfering with the spatial clustering in August. So although such models are useful 

for visualization and following changes in spatial heterogeneity, input and output need to be critically evaluated before 

implementation in monitoring programs. To test whether the differences between months result from seasonal variation or 

other factors, results over multiple years and additional seasonal cruises need to be made to better characterize heterogeneity 30 

of the phytoplankton community structure.  
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Designing ‘smart’ phytoplankton monitoring 

A smart monitoring program combines high and low resolution methods in a supplementary way. No method or parameters 

will offer clear-cut answers, which accounts for low-resolution and high-resolution methods alike. Low resolution methods 

remain a necessity to support the proposed measurements set-up for three reasons: the practical requirement for calibration 

and blank correction, to retrieve more detailed taxonomical information and to capture the variability in the water column. 5 

Firstly, FRRf measurements are affected by interference of colored dissolved matter which can lead to under or overestimation 

of some parameters (like Fv/Fm; Cullen and Davis, 2003). The blank correction is still manual and should be done at least when 

abiotic conditions change.  

Secondly, regular measurements of the whole water column remain a necessity to retrieve information on the vertical 

heterogeneity and the light extinction in the water column. Surface water measurements are only a good reflection of the water 10 

column when mixed layer depth is deeper than the euphotic zone. Stratification or mixed layer depth shallower than the 

euphotic zone can result in subsurface chlorophyll maximum layers and significantly different phytoplankton community 

(Latasa et al., 2017). Extrapolation of surface measurements to water column estimates is required to assess the carrying 

capacity of the ecosystem and the contributions to biogeochemical cycles. Both the mixed layer depth and the light extinction 

in the water column can  only be determined by frequent CTD casts equipped with PAR sensor.  15 

Thirdly, the level of detail required to identify harmful, keystone or invasive species is only achieved by microscopy analysis. 

A potential combination of high and low resolution methods would be to use high-resolution methods to identify extra sampling 

points based on real-time projections, opening up early warning methodologies. For example, in the April cruise both 

Noordwijk 70 and Terschelling 235 km show high gross primary productivity, but in between both high and low productivity 

rates occur which are not detected with the current sampling program (Fig. 6). The combination of high-resolution in situ 20 

methods with remote sensing has potential to further increase the spatial and temporal scale. Estimating biological parameters 

using remote sensing is still difficult, especially in turbid, coastal, case-2 waters (Gohin et al., 2005; van der Woerd et al., 

2008). Therefore, in vivo measurements are required to calibrate remote sensing based models and we suggest that automated 

flowcytometry and production measurements based on FRRf methodology can fulfil this role.  

5 Conclusions 25 

A good monitoring program monitors the presence of functional types of phytoplankton, including the harmful taxons, the 

carrying capacity of the ecosystem and changes in biogeochemical cycling. The objective of this study was to evaluate the 

use of FRR fluorometry and flowcytometry for such monitoring purposes. The four conducted cruises spread over 5 months 

offered a wide variety of environmental conditions and phytoplankton community states, which the utilized methods were 

able to visualize. Inclusion of high-resolution methods in monitoring programs allows for analysis of finer scale events. 30 

Furthermore, it allows for analysis of living phytoplankton and is thereby able to measure rates and avoid effects of 

preservation and storage of samples. Another advantage is that high-resolution methods allows for easier comparison 
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between countries, once common protocols have been established. Nevertheless, low resolution methods remain a necessity 

for more detailed taxonomic analysis, information on vertical heterogeneity, to calibrate and to correct for blanks. Data 

analysis might be the biggest bottleneck of the implementation of these high-resolution methods. The cluster analysis of 

flowcytometric data has high potential for improvement to increase the informative value of the method. Especially 

identification of phytoplankton clusters with a functional quality, such as nitrogen fixers, calcifiers or DMS-producers, 5 

would be helpful for interpretation of ecosystem dynamics and biogeochemical fluxes. Regarding the FRRf, the main 

challenge is converting electron transport rate to gross primary productivity in carbon units. Further research in these topics 

would benefit implementation of these methods into monitoring protocols. Furthermore, it is important to account for diurnal 

patterns in monitoring set-up to be able to distinguish between diurnal and spatial variability. Possibly the diurnal variability 

could be modelled, but more studies with a Langragian based approach would be needed for a better understanding of the 10 

impact of diurnal variability in the data. Overall, the in this study presented high-resolution measurement set-up has large 

potential to improve phytoplankton monitoring in supplement to existing low-resolution monitoring programs. 
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