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Abstract: With the objective of tackling the problem of inaccurate long-term El Niño 33 

Southern Oscillation (ENSO) forecasts, this paper develops a new 34 

dynamical-statistical forecast model of sea surface temperature anomaly (SSTA) field. 35 

To avoid single initial prediction values, a self-memorization principle is introduced 36 

to improve the dynamic reconstruction model, thus making the model more 37 

appropriate for describing such chaotic systems as ENSO events. The improved 38 

dynamical-statistical model of the SSTA field is used to predict SSTA in the 39 

equatorial eastern Pacific and during El Niño and La Niña events. The long-term 40 

step-by-step forecast results and cross-validated retroactive hindcast results of time 41 

series 
1T and 2T are found to be satisfactory, with a pearson correlation coefficient of 42 

approximately 0.80 and a mean absolute percentage error (MAPE) of less than 15%. 43 

The corresponding forecast SSTA field is accurate in that not only is the forecast 44 

shape similar to the actual field, but the contour lines are essentially the same. This 45 

model can also be used to forecast the ENSO index. The temporal correlation 46 

coefficient is 0.8062, and the MAPE value of 19.55% is small. The difference 47 

between forecast results in summer spring and those in winter autumn is not high, 48 
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indicating that the improved model can overcome the spring predictability barrier to 49 

some extent. Compared with six mature models published previously, the present 50 

model has an advantage in prediction precision and length, and is a novel exploration 51 

of the ENSO forecast method.  52 

 53 

Keywords: Dynamical-statistical forecast model; self-memorization principle; sea 54 

surface temperature field; long-term forecast of ENSO 55 

1. Introduction 56 

The El Niño Southern Oscillation (ENSO), the well-known coupled atmosphere 57 

–ocean phenomenon, was firstly proposed by Bjerknes (1969). The ENSO 58 

phenomenon can influences regional and global climates, so the prediction of ENSO 59 

has received considerable public interest (Rasmusson and Carpenter, 1982; Glantz et 60 

al., 1991).  61 

Over the past two to three decades, one might reasonably expect the ability to 62 

predict warm and cold episodes of ENSO at short and intermediate lead times to have 63 

gradually improved (Barnston et al., 2012). Many countries have been focusing on 64 

ENSO forecasts since the 1990s, and the ENSO forecast has become one of the 65 

important research topics in the International Climate Change and Predictability 66 

Research plan. The U.S. International Research Institute for Climate and Society, the 67 

U.S. Climate Prediction Centre, Japan Meteorological Agency, and European Centre 68 

for Medium-Range Weather Forecasting have developed different coupled 69 

atmosphere–ocean models to forecast ENSO (Saha et al., 2006; Molteni et al., 2007) . 70 

http://www.google.com.hk/url?sa=t&rct=j&q=IRI&source=web&cd=2&ved=0CDYQFjAB&url=%68%74%74%70%3a%2f%2f%69%72%69%2e%63%6f%6c%75%6d%62%69%61%2e%65%64%75%2f&ei=4XvTUcmLOsTJkwWo7IHoAQ&usg=AFQjCNG-SWlaVIMXHJqsz1SxZOv9TvJ1Hw&bvm=bv.48705608,d.dGI&cad=rjt
http://www.google.com.hk/url?sa=t&rct=j&q=CPC&source=web&cd=2&cad=rja&ved=0CDYQFjAB&url=%68%74%74%70%3a%2f%2f%77%77%77%2e%63%70%63%2e%6e%63%65%70%2e%6e%6f%61%61%2e%67%6f%76%2f&ei=e3vTUaXHG4rYkAXO94HwAw&usg=AFQjCNECcdXAbmMTWNODe8uOnFY9kjsWug&bvm=bv.48705608,d.dGI
http://www.google.com.hk/url?sa=t&rct=j&q=JMA&source=web&cd=1&cad=rja&ved=0CCwQFjAA&url=%68%74%74%70%3a%2f%2f%77%77%77%2e%6a%6d%61%2e%67%6f%2e%6a%70%2f%6a%6d%61%2f%69%6e%64%65%78%65%2e%68%74%6d%6c&ei=DX3TUYGLOoK8kgXXtYDwBQ&usg=AFQjCNEpj_2tE0cjgecbx-EmYedqG8l2yA&bvm=bv.48705608,d.dGI
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The forecast models can generally be divided into two types (Palmer et al., 2004). 71 

The first type is typified by a dynamic model, which mathematically expresses 72 

physical laws that govern how the ocean and the atmosphere interact. The second type 73 

is typified by a statistical model, which requires large a amount of historical data and 74 

analyses the data to do forecasting (Chen et al., 1995; Moore et al., 2006). 75 

Over the past three decades, ENSO predictions have made remarkable progress, 76 

reaching a stage where reasonable statistical and numerical forecasts (Jin et al., 77 

2008)can be made 6–12 months in advance (Wang et al., 2009a). . However, there are 78 

three problems remaining to be resolved (Zhang et al., 2003aa): (1) The current 79 

ENSO predictions are mainly limited to the short term, such as annual and seasonal 80 

predictions; (2) Although the representation of ENSO in coupled models has 81 

advanced considerably during the last decade, several aspects of the simulated 82 

climatology and ENSO are not well reproduced by the current generation of coupled 83 

models. The systematic errors in SST are often very large in the equatorial Pacific, 84 

and model representations of ENSO variability are often weak and/or incorrectly 85 

located (Neelinet al. 1992; Mechoso et al. 1995; Delecluse et al. 1998; Davey et al. 86 

2002). (3) Coupled models of ENSO predictions initialized from observed initial 87 

states tend to adjust towards their own climatological mean and variability, leading to 88 

forecast errors. The errors associated with such adjustments tend to be more 89 

pronounced during boreal spring, which is often called the ‘‘spring predictability 90 

barrier’’ (Webster et al., 1999). More efficient models are therefore desired (Belkin 91 

and Niyogi, 2003; Weinberger and Saul, 2006). Therefore, the idea of combining 92 
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dynamical and statistical methods to improve weather and climate prediction has been 93 

developed in many studies (Chou, 1974; Huang et al., 1993;Yu et al., 2014a; Yu et 94 

al.,2014b). By introducing genetic algorithms (GAs), Zhang et al. (2006) inverted and 95 

reconstructed a new dynamical-statistical forecast model of the tropical Pacific sea 96 

surface temperature (SST) field using historic statistical data (Zhang et al., 2008). 97 

However, there is one flaw in the forecast model: the time-delayed SST field. This is 98 

because ENSO is a complicated system with many influencing factors. To overcome 99 

information insufficiency in the forecast model, Hong et al. (2014) selected the 100 

tropical Pacific SST, SSW and SLP fields as three modelling factors and utilized the 101 

GA to optimize model parameters. 102 

However, the above dynamical prediction equations which were ,proposed by 103 

Hong et al.(2014), greatly depend on a single initial value, creating long-term 104 

forecasts over 8 months that diverged significantly. These unsatisfactory results 105 

indicate that this model needs to be improved. Cao (1993) first proposed the 106 

self-memorization principle, which transforms the dynamical equations with the 107 

self-memorization equations, wherein the observation data can determine the memory 108 

coefficients. This method has been widely used in forecast problems in environmental, 109 

hydrological and meteorological fields (Feng et al., 2001; Gu, 1998; Chen et al., 110 

2009). The method can avoid the question of initial conditions for the differential 111 

equations, so it can be introduced here to improve the proposed dynamical forecast 112 

model. 113 

Therefore, an improved dynamical-statistical forecast model of the SST field 114 
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and its impact factors with a self-memorization function was developed. The 115 

improved model can absorb the information from past observations.   116 

This paper is organized as follows: Research data and forecast factors are 117 

introduced in section 2. In Section 3 the reconstruction of the dynamical model of 118 

SSTA field is described. To improve the reconstruction model, the self-memorization 119 

principle is introduced in Section 4. Model forecast experiments are described in 120 

Section 5, and conclusions are given in Section 6. 121 

2. Research data and forecast factors 122 

2.1 Data  123 

The monthly average SST data  from January 1951 to January 2010, 720 124 

months in total, were obtained from the UK Met Office Hadley Centre for the region 125 

(30°S-30°N；120°E -90°W). The gridded 1° 1°Met Office Hadley Sea Ice and 126 

SST dataset (HadISST1; Rayner et al. 2003) includes both in situ and available 127 

satellite data. The sea areas provide important information on ocean-atmosphere 128 

coupling in the East and West Pacific Ocean and the El Niño /La Niña events. The 129 

reanalysis data, zonal winds and sea level pressures were obtained from the National 130 

Center for Environmental Forecast of America and the National Center for 131 

Atmospheric Research (Kalnay et al., 1996). The sea surface height (SSH) field was 132 

obtained from Simple Ocean Data Assimilation (SODA) data (James and Benjamin, 133 

2008). Outgoing longwave radiation (OLR) was obtained from the National Oceanic 134 

and Atmospheric Administration (NOAA) satellites, at a resolution of 0.5° × 135 

0.5°(Liebmann and Smith, 1996).The sea areas provide important information on 136 
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ocean-atmosphere coupling in the East and West Pacific Ocean and the El Niño and 137 

La Niña events. The reanalysis data and zonal winds were obtained from the National 138 

Center for Environmental Forecast (NECP) of America and the National Center for 139 

Atmospheric Research (NCAR) (Kalnay et al., 1996). The Southern Oscillation Index 140 

(SOI) data were obtained from the Climate Prediction Center (CPC). The time series 141 

of all data were from Jan. 1951 to JanDec. 2010, 720 months in total. 142 

2.2 EOF deconstruction 143 

The sea surface temperature anomaly (SSTA) field can be calculated from the 144 

SST field and can be deconstructed into time (coefficients)-space (structure) using the 145 

empirical orthogonal function (EOF) method. Detailed information on the EOF 146 

method can be seen in the related references (Dommenget & Latif, 2002). We have 147 

used covariance matrix，because the covariance matrix was selected to diagnose the 148 

primary patterns of co-variability in the basin-wide SSTs, rather than the patterns of 149 

normalized covariance (or correlation matrix). 150 

 151 

We used the smooths function with MATLAB to smooth the SSTA field before 152 

the EOF deconstruction, which is five points two times moving, mainly filtering out 153 

some noise points and outliers. Then aAn empirical orthogonal function (EOF) 154 

analysis of smoothed anomalies was performed, and the first two SSTA EOFs are 155 

shown in Figs. 1a and 1c. The principal component (PC) time series corresponding to 156 

the first and second EOFs are shown in Figs. 1b and 1d. The first EOF pattern, which 157 

accounted for 61.33% of the total SSTA variance, represented the mature ENSO phase 158 
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(El Niño or La Niña), and the corresponding PC time series was highly correlated 159 

(with a correlation coefficient of  0.85) with the cold tongue index (SST anomaly 160 

averaged over 4 °S–4 ° N, 180°–90 ° W) over the whole period.  The second EOF, 161 

accounting for 14.52% of the total SSTA variance, indicated the ENSO signal 162 

beginning to enhancethe ENSO signal beginning to decay. Compared with the first 163 

mode, these were slightly attenuated in terms of the scope and intensity. The above 164 

analysis is similar to the EOF analysis of the SSTA field in the previous studies 165 

(Johnson et al., 2000;Timmermann et al., 2001). This indicates that the front two 166 

variance contribution modes can describe the main characteristics of the SSTA field 167 

and El Niño/La Niña. Therefore, we can choose the
1 2,T T  time series EOF 168 

decomposition modes as the modelling objects. 169 

2.3 Selection of other prediction model factors 170 

Considering the complexity of computation, the amount of variables in the 171 

equations of our model can’t be too large, usually 3 or 4 for the best. This has been 172 

explained in our previous studies (Zhang et al., 2006; Zhang et al., 2008).  If there are 173 

more than 4 variables in the modeling equation, it will cause the amount of 174 

parameters such as 
1 2 1 2, ,... , , ,... ,...n na a a b b b too large. The huge computation makes it 175 

difficult to be precisely modeled. Thus, the total number of parameters in the model of 176 

five variables was 102, which may cause an overfitting problem. Hence, when we 177 

selected the model of five or six variables which entailed large amounts of 178 

computation that made precision difficult, and too many parameters might cause an 179 

overfitting phenomenon. If we choose only two or even fewer variables, the forecast 180 
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performance is poor too. Too few variables cause too small reconstructed parameters, 181 

resulting in amounts of important information missing out in the model. Thus, four 182 

variables are best for dynamically and accurately modeling. Because we have chosen 183 

two time series in section2.2 as the modeling objects, now we should select the other 184 

two ENSO intensity impact factors. 185 

The ENSO intensity impact factor is an important issue in ENSO prediction. 186 

Previous studies have been completed in this area, which found that teleconnection 187 

patterns, temperature, precipitation, wind and SSH may affect ENSO strength. For 188 

example, Trenberth et al. (1998) noted that PNA, SOI and OLR in the Pacific 189 

Intertropical Convergence Zone (ITCZ) are all closely related to ENSO. 190 

Webster(1999) pointed out after the 1970, Indian Ocean dipole (IOD) is not only 191 

affected by ENSO, but also affected the strength of ENSO (Ashok et al., 2001). Yoon 192 

and Yeh (2010) reported that the Pacific Decadal Oscillation (PDO) disrupts the 193 

linkage between El Ni˜no and the following Northeast Asian summer monsoon 194 

(NEASM) through inducing the Eurasian pattern in the mid-high latitudes. The vast 195 

majority of studies (Tomita and Yasunari, 1996; Zhou and Wu, 2010; Kim et al., 2017) 196 

have concentrated on the impacts of ENSO on the East Asian winter 197 

monsoon( EAWM). During the EAWM season, ENSO generally reaches its mature 198 

phase and has the most prominent impact on the climate. Wang et al. (1999a) and 199 

Wang et al. (1999b) suggested that the zonal wind factors in the eastern and western 200 

equatorial Pacific play a critical role in the phase of transition of the ENSO cycle, 201 

which could excite eastward propagating Kelvin waves and affect the SSTA in the 202 
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equatorial Pacific. Zhao et al. (2012) analyzed the characteristics of the tropical 203 

Pacific SSH field and its impact on ENSO events.  204 

Based on the above analysis, we have selected nine factors, which may be 205 

closely related with the ENSO index (Niño3.4). 206 

(1)The zonal wind in the eastern equatorial Pacific factor (u1) was calculated 207 

as the grid-point average of zonal wind in the area [5° S ~ 5° N, 150° W ~ 90° W]. 208 

(2) The zonal wind in the western equatorial Pacific factor (u2) was calculated 209 

as the grid-point average of zonal wind in the area [0° ~ 10° N; 135° E ~ 180° E]. 210 

(3) The PNA teleconnection factor was obtained from the CPC. 211 

(4) the dipole mode index factor (DMI) was obtained from SSTA for 212 

June-July-August (JJA) based on Saji(1999) method. 213 

      (5) The SOI factor was obtained from the CPC. 214 

      (6) The PDOI factor was obtained from department of Atmospheric Sciences 215 

in the university of Washington. The web is 216 

http://tao.atmos.washinton.edu/pdo/RDO.latest. 217 

      (7) The EAWM index (EAWMI) factor was proposed by Yang et al. (2002), 218 

which is defined by the meridional 850-hPa winds averaged over the region (20° 219 

~40°N, 100°~140°E). 220 

(8) The OLR in the ITCZ factor was calculated as the grid-point average of 221 

OLR in the area [10°N～20°N，120°E～150°E]. 222 

(9) The SSH factor was calculated as the grid-point average of the SSH data in 223 

the area [10° S ~ 10° N; 120° E ~ 60° W]. 224 
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A correlation analysis of the above factors was carried out and the results are 225 

shown in Table 1. 226 

Table 1 shows that SOI and EAWMI have the stronger correlation with the 227 

front two time series
1 2,T T  than the other 7 factors. The results are also consistent with 228 

previous research (Clarke and Van Gorder, 2003; Drosdowsky, 2006; Zhang et al., 229 

1996; Wang et al., 2008; Yang and Lu, 2014). Therefore, the first time series
1T , the 230 

second time series 
2T , SOI and EAWMI will be selected as prediction model factors. 231 

The ENSO intensity impact factor is an important issue in the ENSO 232 

prediction. Previous studies have found that teleconnection patterns, temperature, 233 

precipitation, wind and SSH may affect the ENSO strength (Trenberth et al.,1998; 234 

Webster,1999; Ashok et al., 2001; Yoon and Yeh, 2010; Tomita and Yasunari, 1996). 235 

For example, Trenberth et al. (1998) noted that the Pacific North American Oscillation 236 

Index (PNA) and SOI in the Pacific Intertropical Convergence Zone (ITCZ) were all 237 

closely related to ENSO. Liao et al. (2007) also noted that the decadal variation 238 

during ENSO events had a close relationship with the SOI index.The vast majority of 239 

studies (Tomita and Yasunari, 1996; Zhou and Wu, 2010) have concentrated on the 240 

impacts of ENSO on the East Asian winter monsoon (EAWM). During the EAWM 241 

season, ENSO generally reaches its mature phase and has the most prominent impact 242 

on the climate. Wang et al. (1999a) and Wang et al. (1999b) suggested that the zonal 243 

wind factors in the eastern and western equatorial Pacific played a critical role in the 244 

transition phase of the ENSO cycle, which could excite eastward propagating Kelvin 245 

waves and affect the SSTA in the equatorial Pacific.  246 
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Based on the above analysis, we selected four factors, which may be closely 247 

related with the ENSO index (Niño 3.4) and were obtained as follows: 248 

(1) The zonal wind in the eastern equatorial Pacific factor (u1) was calculated 249 

as the grid-point average of zonal wind in the area [5° S ~ 5° N, 150° W ~ 90° W]. 250 

(2) The PNA teleconnection factor was obtained from the CPC. 251 

  (3) The SOI factor was obtained from the CPC. 252 

  (4) The EAWM index (EAWMI) factor was proposed by Yang et al. (2002), 253 

which is defined by the meridional 850-hPa winds averaged over the region (20° 254 

~40°N, 100°~140°E). 255 

All the four data selected ranged from January 1951 to January 2010. 256 

Actually, how many variables and which variables are used in our model 257 

become a key issue to be resolved. We can introduce a stepwise regression principle 258 

to choose more reasonable predictors (Yim et al., 2015), because the stepwise 259 

procedure can help selecting statistically important predictors at each step. The 260 

significance of each predictor selected was based on its significance in increasing the 261 

regressed variance by the standard F test (Panofsky and Brier, 1968). A 95 % 262 

statistical significance level was used as a criterion to select a new predictor at each 263 

step. Once selected into the model, a predictor can only be removed if its significance 264 

level falls below 95 % by the addition/removal of another variable. For example, for 265 

the model of only one variable, because we forecast the ENSO index, we should 266 

choose 1T or 2T as the variable. Considering that 1T  accounts for 61.33% of the total 267 

SSTA variance, so we chose 1T  as the variable. For the model of two variables, there 268 
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are five factors (
2 1,T u , PNA, SOI and EAWMI) which can be chosen for the second 269 

variable. Taking advantage of the stepwise regression ideas and selecting statistically 270 

important predictors by a standard F test, we can find the largest F test value among 271 

the five factors. That is
2T . Continuing this step, we can also select the reasonable 272 

factors for the model of three variables. Based on this thought, when the number of 273 

variables is determined, we can choose the most statistically important variables to 274 

reconstruct the prediction model. The forecast results of these models can be seen in 275 

table 1. 276 

From table 1, the forecast results of all six models are satisfactory, where the 277 

temporal correlations of the models are all greater than 0.60 and the root mean square 278 

errors are all less than 0.81. Among all six models, the forecast results of four 279 

variables are the best for the following reasons: 280 

(1) In general, the amount of parameters is less than 10% of the sample size, 281 

which can avoid over-fitting (Tetko et al., 1995) .The number of parameters 282 

1 2 14 1 2 14 1 2 14 1 2 14, ,... , , ,... , , ,... , , ,...a a a b b b c c c d d d of the model of four variables 1 2, , ,T T SOI EAWMI is 56, 283 

but we deleted the parameters which contributed little to the prediction. That means 284 

that there are 56 parameters in equation (1) in section 3, but there are only 34 285 

parameters in equation (3) in section 3which is our final prediction equation. In 286 

section 5.1, because p is identified as 6, the number of parameters of the 287 

self-memorization function i is 28. Therefore, the total number of parameters in the 288 

model of four variables is 62, which is less than 10% of the sample size (720 months). 289 

The number of parameters 
1 2 20 1 2 20 1 2 20 1 2 20 1 2 20, ,... , , ,... , , ,... , , ,... ,e ,e ,...ea a a b b b c c c d d d of the model 290 
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of five variables
1 2 1, , , ,T T SOI EAWMI u is 100. Although the parameters which contributed a 291 

little were deleted, the number was still 72, and the number of self-memorization 292 

parameters was 30 ( p  determined as 5). Thus, the total number of parameters in the 293 

model of five variables was 102, which was more than 10% of the sample size (720 294 

months).This will cause an overfitting problem. Hence, when we selected the model 295 

of five or six variables which entailed large amounts of computation that made 296 

precision difficult, and too many parameters caused an overfitting phenomenon. That 297 

is why the forecast results of five or six variables were worse than those of four 298 

variables. 299 

(2) The models of one, two and three variables can avoid the overfitting problem, 300 

but too few variables will result in too few reconstruction parameters, causing 301 

important information missing from the model. Especially, when the model of one or 302 

two variables was considered, we only studied the self-memorization of the ENSO 303 

system but did not consider the mutual-memorization between factors. Thus, 304 

equations of our model only contained a self-memory term, not an exogenous effect 305 

term. That is why the forecast results of one, two and three variables were worse than 306 

those of four variables. 307 

Based on the above analysis, we finally chose 
1T , 

2T , SOI and EAWMI as 308 

predictors for the model. 309 

3. Reconstruction of dynamical model based on GA 310 

Takens’ delay embedding theorem (Takens, 1981) provides the conditions under 311 

which a smooth attractor can be constructed from observations made with a generic 312 
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function. Later results replaced the smooth attractor with a set of arbitrary 313 

box-counting dimensions and the class of generic functions with other classes of 314 

functions. Takens had shown that if we measured any single variable with sufficient 315 

accuracy for a long period of time, it would be possible to construct the underlying 316 

dynamical structure of the entire system from the behavior of that single variable 317 

using delay coordinates and the embedding procedure. It was therefore possible to 318 

construct a dynamical model of system evolution from the observed time series. 319 

Introducing this idea here, four time series of the 
1T , 

2T , SOI and EAWMI factors 320 

were chosen to construct the dynamical model. 321 

The basic idea of statistical-dynamical model construction is discussed in 322 

Appendix A and was introduced in our previous work (Zhang et al., 2006; Hong et al., 323 

2014). 324 

A simplified second-order nonlinear dynamical model can be used to depict the 325 

basic characteristics of atmosphere and ocean interactions (Fraedrich, 1987). Suppose 326 

that the following nonlinear second-order ordinary differential equations are taken as 327 

the dynamical model of reconstruction. In the equations, 1 2 3 4, , ,x x x x were used to 328 

represent the time coefficient series of
1T , 

2T , SOI and EAWMI.  329 

2 2 2 21

1 1 2 2 3 3 4 4 5 1 6 2 7 3 8 4 9 1 2 10 1 3 11 1 4 12 2 3 13 2 4 14 3 4

2 2 2 22

1 1 2 2 3 3 4 4 5 1 6 2 7 3 8 4 9 1 2 10 1 3 11 1 4 12 2 3 13 2 4 14 3 4

3

1

dx
a x a x a x a x a x a x a x a x a x x a x x a x x a x x a x x a x x

dt

dx
b x b x b x b x b x b x b x b x b x x b x x b x x b x x b x x b x x

dt

dx
c

dt

             

             


2 2 2 2

1 2 2 3 3 4 4 5 1 6 2 7 3 8 4 9 1 2 10 1 3 11 1 4 12 2 3 13 2 4 14 3 4

2 2 2 24

1 1 2 2 3 3 4 4 5 1 6 2 7 3 8 4 9 1 2 10 1 3 11 1 4 12 2 3 13 2 4 14 3 4

x c x c x c x c x c x c x c x c x x c x x c x x c x x c x x c x x

dx
d x d x d x d x d x d x d x d x d x x d x x d x x d x x d x x d x x

dt

            

             

330 

 331 
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                                                                  (1) 332 

Based on the parameter optimization search method of GA in Appendix A, the 333 

time coefficient series of
1T , 

2T , SOI and EAWMI from January 1951 to April 2008 334 

are chosen as the expected data to optimize and retrieve model parameters. In order to 335 

eliminate the dimensionless relationship between variables, data standardization is to 336 

transform data from different orders of magnitude to the same order of magnitude, 337 

thus making the data comparable. So we used min

max min

nor

x x
x

x x





 to normalize the raw 338 

value of each of the four predictors, then we used the normalized value to model and 339 

forecast. To avoid the overfitting problem, we used  min

max min

nor

x x
x

x x





 to normalize 340 

the raw value of each of the four predictors, then we used the normalized value to 341 

model and forecast. Finally, we made forecast results revert back to the raw data 342 

magnitude by max min min( )norx x x x x    . 343 

In order to quantitatively compare the relative contribution of each item of our 344 

model to the evolution of the system, we calculated the relative variance contribution. 345 

The formula is as follows: 
2

14
21

1

1
[ ], 1,2,...,14

n
i

i

j
i

i

T
R i

n
T



 


, Where n is the length of 346 

the data, 1 1 2 2 14 3 4, ,...,iT a x a x a x x  is the item in the equation. According to our 347 

previous research (Hong et al., 2007), the variance contribution of the real item 348 

reflecting the performance of the model has a large proportion, while the variance 349 

contribution of the false term is almost zero, so we delete the weak items of 350 

0.01iR  . 351 
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After deleting the weak itemseliminating weak items with small dimension 352 

coefficients, the nonlinear dynamical model of the first time series
1T , the second time 353 

series
2T ,SOI and EAWMI can be reconstructed as follows: 354 

2 21
1 1 2 3 1 3 1 2 1 3 2 4

2 2 22
2 1 2 4 1 2 4 1 3 1 4 3 4

3
3

0.3328 1.2574 0.3511 0.0289 3.1280 0.0125 2.7805 1.5408

1.0307 3.1428 0.3095 4.2301 1.2066 2.5024 0.2891 0.7815 0.4266

2.3

dx
F x x x x x x x x x x x

dt

dx
F x x x x x x x x x x x x

dt

dx
F

dt

         

         

   2 2 2

1 3 4 2 3 4 1 4 2 3 2 4

2 2 24
4 2 4 1 3 4 1 2 1 4 2 4

155 3.2166 1.5284 1.4527 0.0034 4.1206 -0.0025 0.0277 1.2860

0.4478 -0.0268 0.8995 2.3890 0.2037 1.3035 2.0458 2.0015

x x x x x x x x x x x x

dx
F x x x x x x x x x x x

dt

      

       

355 

                                                              (2) 356 

The appropriate model coefficient estimates determine the robustness of the 357 

model and the accuracy of forecast results. We should now judge whether the model 358 

coefficients are appropriate or not.  359 

Frist, the largest Lyapunov exponent (LLE) is one of the indexes that can 360 

represent the characteristics of chaotic systems. The final Lyapunov exponents of Eq. 361 

(2) were [0.0433，0.0012，-0.1285], containing both a negative Lyapunov exponent 362 

and two positive Lyapunov exponents, which demonstrate that our dynamic system is 363 

indeed a chaotic system. 364 

Second, we calculated the equilibrium roots of Eq. (2). Only the third 365 

equilibrium was adjudged to be stable, based upon higher-order terms within the 366 

Taylor series, the indices of which were mostly in accordance with the actual weather 367 

system. The indices in the unstable equilibria could not accurately describe the actual 368 

weather. Based on these two aspects, we can see that the model coefficient estimates 369 

were reasonable and reflected the dynamical characteristics of the model. 370 

The model required testing. Because the training period was from January 1951 371 
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to April 2008, we chose 
1T , 

2T ,SOI and EAWMI of May 2008, which were not used 372 

as initial forecast data in the modeling. Next, the Runge–Kutta method was used to do 373 

the numerical integration of the above equations, and every step of the integration was 374 

regarded as 1 month’s worth of forecasting results. As a result, forecast results of four 375 

time series over a period of 20 months were obtained. Here, the focus was on the 376 

forecast results of 
1T  and 

2T , as shown in Fig.2.  377 

The pearson correlation coefficient (CC) (Wang et al. 2009b) and the mean 378 

absolute percentage error (MAPE)( Hu et al. 2001) are employed as objective 379 

functions to calibrate the model. The CC evaluates the linear relationship between the 380 

observed and predicting values and MAPE measures the difference between the 381 

observed and predicting values.  382 

From Fig. 2, forecast performance of 
1T  and 

2T  within 5 months was better. 383 

Using 
1T  as an example, the at this time, CCthe temporal correlation between model 384 

predictions and corresponding observations over the first five months forecasts was 385 

0.8966 and the mean absolute percentage error (MAPE ) (Hu et al., 386 

2001),
   

 
0

1 0

1
MAPE 100,( 5)

n
e

i

D i D i
n

n D i


   , was 8.32%. However, after 5 387 

months, MAPE increased rapidly, and was 31.29% at 10 months. The model forecast 388 

then significantly diverged from observations, and the forecast became inaccurate. 389 

After 10 months, the forecast results became increasingly worse, which indicated that 390 

the forecast of the model after 5 months was unacceptable. The forecast results of 391 

2T were similar to those of 
1T . 392 

The model’s skill should be further assessed by cross-validated retroactive 393 
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hindcasts of the time series. As in the above example, omitting a portion of the time 394 

series (12 months, January Jan. 1951 to January Dec. 19512) from observations, we 395 

trained the model based on the data from February Jan. 1952 1951 to December Dec. 396 

2010, and then predicted the omitted segments (12 months, Jan. 1951 to Dec. 397 

1951January 1951 to January 1952). Then in the next prediction experiment, the 398 

omitted segment is Jan.1952 to Dec. 1952 and the training samples are Jan. 1951 to 399 

Dec.1951 and Jan.1953 to Dec.2010. So the forecast time series is Jan.1952 to Dec. 400 

1952.We then repeated this procedure by moving the omitted segment along the 401 

entirety of the available time series. Each experiment have has used the different 402 

training sample and have established the different model equation (but the method is 403 

the same). The similar process of the cross-validated retroactive hindcasts has also 404 

been used in the previous literatures (Hu et al., 2017). 405 

Finally, we obtained cross-validated retroactive hindcast results of 1T  and 2T , as 406 

shown in Fig. 3. So the forecast results of 60 cross experiment (each experiment is the 407 

prediction of the 12 month as Fig.2) according to the time sequence can merger into a 408 

new time series (from Jan.1951-Dec.2010), and then the pearson correlation 409 

coefficient (CC) and the mean absolute percentage error (MAPE) can be calculated by 410 

the new prediction time series and the time series of the actual value. Figure 3 is 411 

combined results of the 60 forecast experiments.  412 

As Fig. 2, the forecast performance of 
1T  and 

2T  in Fig. 3 was not satisfactory. 413 

The model forecast significantly diverged from observations, and the forecast became 414 

inaccurate. The temporal correlationsCC of
1T  and 

2T between model predictions and 415 

corresponding observations were 0.3411 and 0.4176, respectively. Additionally, the 416 
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mean absolute percentage errors (MAPE) of
1T  and 

2T were 65.42% and 57.56%, 417 

respectively. This indicates that the forecast of the model in the long -term was 418 

inaccurate and unacceptable. 419 

The forecast result may be inaccurate when the integral forecasting time is long. 420 

There will be a significant divergence which will cause an ineffective forecast. To 421 

improve the forecast accuracy, the forecast not only depends on the integral equation 422 

but also on a single initial value. Choosing the different initial value will cause 423 

different forecast accuracy. For example, in a total of 60 cross-validated retroactive 424 

hindcasts examples, the minimum MAPE was 37.65%, while the maximum MAPE 425 

was 89.88%. A forecast, depending on a single initial value, will cause instability of 426 

the forecast results. These two problems are addressed by introducing the 427 

self-memorization principle in the next section. 428 

 429 

4. Introduction of self-memorization dynamics to improve the 430 

reconstructed model 431 

In the above discussion, it was shown that the accuracy of the forecast results of 432 

equation (2) were unsatisfactory. To improve long-term forecasting results, the 433 

principle of self-memorization can be introduced into the mature model (Gu, 1998; 434 

Chen et al., 2009). The principle of self-memorization dynamics (Cao, 1993; Feng et 435 

al., 2001) can be seen in Appendix B. 436 

Based on Eq. (B10) in Appendix B, the improved model can be expressed as 437 



 

21 
 

follows:
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 (3) 438 

where iy  is replaced by the mean of two values at adjoining times; i.e., 439 

1

1
( )

2
i i iy x x  ; F is the dynamic core of the self-memorization equation, which 440 

can be obtained from Eq. (2); and  and    are the memory coefficients, the formula 441 

for which can be found in Appendix B. 442 

If the values of  and    can be obtained, Eq. (3) can be used to obtain the 443 

results of final prediction. The memory coefficients  and    in Eq. (3) were 444 

calibrated using the least-squares method with the same data (January 1951 to April 445 

2008) as those used in Section 3. Eq. (3) can be deconstructed as follows (M is the 446 

length of the time series): 447 
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The matrix equation is:  450 

X Y F                (4) 451 

where [ ]Z Y F , W

 
 


 
  

 . 452 

Eq. (4) can be written as: 453 

X ZW                       (5) 454 

The memory coefficients vector W  can be calibrated using the least squares 455 

method: 456 

1( )T TW Z Z Z X                    (6) 457 

The memory coefficients ,a  can be obtained from Eq. (6). We then made a 458 

prediction using the self- memorization equation (3), which used the p values before 459 

0t . 460 

The coefficients in F and W were used with the same training data from January 461 

1951to Apr.il 2008. In the forecast examples, we trained both the coefficients in F and 462 

W at the same time, but in the paper we describe them separately to facilitate the 463 

reader for better understanding.  464 

5. Model prediction experiments 465 

5.1 Forecast of time series 1T and 2T  466 

The training sample for the model was from January1951 to April 2008. Here, from 467 

Eq. (3), the forecast results using 1 2,T T , SOI and EAWMI factors can be calculated, called 468 

as step-by-step forecast.  469 

When the retrospective order p is confirmed, step-by-step forecasts can be 470 
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carried out. For example, when the 
1 2,T T , SOI and EAWMI values of May 2008 were 471 

forecast, 
iy was obtained from the previous p +1 time of

1 2,T T , the SOI and the 472 

EAWMI data, and 
1 2 3 4( , , , )i i i i iF x x x x was obtained from the previous p  times of 473 

1 2,T T , the SOI and the EAWMI data. All four equations were integrated simultaneously. 474 

Taking these in Eq. (3), we can get the
1 2,T T , SOI and EAWMI values of May 2008, 475 

which these can be taken as the initial values for the next prediction step. Then, the 476 

1 2,T T , SOI and EAWMI values from June 2008 and so on, can be generated. 477 

5.1.1 Determination of p  478 

Based on the self-memorization principle, the self-memorization of the system 479 

determines the retrospective order p (Cao, 1993). If the system forgets slowly, 480 

parameters a  and  will be small and the p value should be high. The SSTA field 481 

forecasts were on a monthly scale, the change of which was slow in contrast to 482 

large-scale atmospheric motion. So parameters a and were small, and generally, 483 

the p  value was in the range 5 to 15.  484 

The retrospective order p was obtained by a trial calculation method. We selected 485 

the p values in the range 4 to 16 to construct the model. The correlation 486 

coefficientsCC (CC) and MAPE of long-term fitting test (from February 1951 to 487 

December 2010) are shown in Table 2, which can be used as the standard to determine 488 

the retrospective order p.  489 

Table 2 indicates that when 6p  , the MAPE values of long-term fitting test 490 

were the smallest and the correlation coefficientsCCs were the largest. Also, when p   491 

from 5 to 9, CCs The CCs were all more than 0.58 and the forecast results were all 492 

http://dict.baidu.com/s?wd=in%20contrast
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good, which is consistent with our interpretation of the physical mechanisms in 493 

section 6.2 below. SOI and EMWMI were 5-12 months lead relationships with SST 494 

(Xu et al., 1993; Chen et al, 2010; Wang et al., 2003). Using a cumulative period of 495 

SOI , EMWMI 5-8 months ahead as initial values can help improve the final forecast 496 

results. Our results in table 2 are consistent with the actual physical ENSO process. 497 

Therefore, we selected the retrospective order as p=6. 498 

Then, the prediction experiments can be carried out, based on improved 499 

self-memorization Eq. (3). 500 

The improved self-memorization equation of 
1 2,T T , SOI and EAWMI can then be 501 

established. After the differential equation was discretely dealt with, the memory 502 

coefficients were solved by the least-squares method given in section 4 (Training 503 

period is January 1951 to April 2008). Finally, the improved prediction equation of 504 

1 2,T T , SOI and EAWMI, based on the self-memorization principle, can be expressed 505 

as: 506 
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                (7) 507 

where508 
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0.0315 2.113 0.0284 2.1468 0.0688 0.7014 1.3248

0.4088 1.887 1.0233 1.5485 0.9028 1.0255 0.6443
=[ ]

0.9088 0.2557 0.9671 0.0054 1.0568 2.9764 0.5234

0.2088 1.0567 0.4891 0.5066 0.4890 1.4555 1.0966

ij

i

 

  
 

  
 
    
 

   

（ 0,1,..., 4; j 7, 6,..., 1)    

 509 

0.0485 0.0425 -1.7688 0.8543 2.8901 0.1788 -0.9066

0.07642 0.0941 1.2466 -0.2288 0.1097 2.3221 1.4228
=[ ]

0.5288 1.2368 -0.5568 0.0155 0.2886 -0.1560 1.2775

1.5335 0.2887 -0.5336 0.6072 0.5611 1.0225 -1.0625

ij 

 


 

 


   

0,1,..., 4; j 6, 5,...,0)i






   （

 510 

The step-by-step forecast was performed. The retrospective order 6p   means 511 

that earlier seven observation data (  1 7p ) should be used during the forecasting 512 

process. The forecast results per month were saved for the next period predictions. 513 

5.1.2 Long-term step-by-step forecasts of 1T  and 2T  514 

To test the actual forecast performance of the above improved model, long-term 515 

step-by-step forecasts of 1T  and 2T from May 2008 to December 2010 for 20 months 516 

were carried out, as shown in Fig. 4. The forecast results of 1T  and 2T  were good. 517 

Within 8 months, the correlation coefficientsCCs of 1T  and 2T  were 0.9163 and 518 

0.9187. MAPEs of 1T  and 2T  were small, only 5.86% and 6.78%. The forecast time 519 

series from 8 months to 14 months gradually diverged, but the trend was acceptable. 520 

The CCcorrelation coefficients of 1T  and 2T  reached 0.8375 and 0.8251, and 521 

MAPEs of 1T  and 2T  were 8.32% and 9.11%. After 14 months, forecast began to 522 

diverge and the error started to increase, but the correlation CCcoefficients of 1T  and 523 

2T  remained about 0.6899 and 0.6782, and MAPEs reached 18.31% and 19.44%, 524 

which can be acceptable.  525 

5.2 Cross-validated retroactive hindcasts of time series 1T and 2T  526 
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As in section 3, the model’s skill should be further assessed by cross-validated 527 

retroactive hindcasts of the time series. Because our step-by-step forecasts need the 528 

earlier seven observation data (  1 7p ), we can obtain cross-validated retroactive 529 

hindcast results of 
1T  and 

2T  from August 1951 to December 2010, as shown in Fig. 530 

5. 531 

From Fig. 5, the forecast performance of 
1T  and 

2T  was good. The 532 

CCcorrelation coefficients of 1T  and 2T  were 0.7124 and 0.7036, respectively. The 533 

MAPEs of 1T  and 
2T were small, only 19.57% and 19.79%, respectively. The peaks 534 

and valleys of 1T  and 2T  were also forecasted accurately. The forecast results 535 

indicated that the cross-validated retroactive hindcast results of 1T  and 2T were close 536 

to the observed values. Compared to Fig. 3, the improved model had better forecast 537 

abilities than the original model. 538 

Many researchers (Zhang et al., 2003b; Smith, 2004) have used Oceanic Niño 539 

Index (ONI) which is used by the U.S. NOAA Climate Prediction Center to determine 540 

the El Niño and La Niña years. It defined that the ONIs of five consecutive months in 541 

winter were all more than 0.5 (less than -0.5) is the ElNiño (La Niña) year. Based on 542 

the above criterion, we can divide the total 60 years (1951-2010) into three categories. 543 

It includes the 18 examples of ElNiño year (such as 1958, 1964, 1966, etc.), 22 544 

examples of LaNiña year (such as 1951, 1955, 1956, etc.) and the remaining 20 545 

experiments of the neutral year. Since the details in Fig.5 is not clear, we list the 546 

forecast results of 60 experiments (including 18 El Niño examples, 22 La Niña 547 

examples and 20 Neutral examples) in table 3. 548 
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From table 3, the average of CC CC of both 1T  and 2T  of 60 experiments 549 

within 6 months was more than 0.84 and MAPE was less than 8%. The average of CC 550 

CC within 12 months was more than 0.74 and MAPE was less than 12%. According 551 

to the literature (Barranel et al., 1999), when MAPE was less than 15%, which means 552 

the error was not great and the forecast results were good. Obviously, the forecast 553 

results of ElNiño / LaNiña experiments were a little worse than those of neutral 554 

examples, which means the forecast ability of our model for the abnormal situation 555 

was a little worse than those for the normal situation. But even for ElNiño / LaNiña 556 

experiments, the average of CC CC was still more than 0.7 and MAPE was less than 557 

15%, which means the error was not too large and was still within an acceptable 558 

range. 559 

5.3Forecast of the SSTA field 560 

When we obtained the forecast results of the time coefficient series 1T  and 2T , 561 

we submitted them into the following equation to reconstruct the forecast SSTA field: 562 

2

1

ˆ , 1,2,...,12t n nt

n

x E T t


       (8) 563 

where nE ， ntT are the EOF space fields and forecast time coefficients, 564 

respectively, and tjx


 is the forecast SSTA field reconstructed by EOF. 565 

After reconstruction of the space mode (treated as constant) and time coefficient 566 

series (model prediction), the forecast of the SSTA fields was obtained, based on the 567 

forecast results of 1T  and 2T in Section 5.2. For economy of space, we cannot draw 568 

all of the forecasted SSTA fields, so we selected a strong El Niño event (December 569 

1997), a strong La Niña event (December 1999) and a neutral event (November 2002) 570 

as examples. 571 
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Fig. 6 shows the forecast SSTA field during a strong El Niño event. From the 572 

actual SSTA field in December 1997 (Fig. 6a), an obvious warm tongue structure 573 

occurred in the area of [10°S～5°N，90°W～150°W] in the Eastern Equatorial Pacific, 574 

and a warm anomalous distribution arose in the west Pacific, which indicated a weak 575 

El Niño event. The forecasted SSTA field of December 1997 is shown in Fig. 6b. 576 

Although the range of warm tongue was a litter bigger than the actual situation, the 577 

forecast shape was similar to the actual field and also the contour lines were similar. 578 

The average MAPE between the forecast field and the actual field is 8.56%, which 579 

was controlled within 10%. The forecast results of the improved model event were 580 

quite good for the El Niño event. 581 

Fig.7 shows the forecasted SSTA field of a strong La Niña event. From the actual 582 

SSTA field in December 1999 (Fig. 7a), an obvious cold pool occurred in the area of 583 

[10°S～10°N，120°W～180°W] in the Equatorial Pacific, which covered the Niño3.4 584 

area. This SSTA field presented a strong strength La Niña event. The forecast SSTA 585 

field from December 1999 is shown as Fig. 7b. Although the strength of the cold pool 586 

was weaker than the actual situation, the forecast shape was similar to that of the 587 

actual field. The average MAPE between the forecast field and the actual field was 588 

9.69%. The errors were larger than that of the El Niño event, but they can be 589 

controlled within 10%, which is acceptable. 590 

Fig. 8 shows the forecasted SSTA field of a neutral event. From the actual SSTA 591 

field in November 2002 (Fig. 8a), a warm pool occurred in the area of [10°S～10°N，592 

120°W～180°W] in the Equatorial Pacific, which covered the Niño3.4 area. However, 593 
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the warm pool was small and weak, which represented a neutral event. The forecasted 594 

SSTA field from November 2002 is shown in Fig. 8b. Comparing Figures 6, 7 and 8, 595 

we can see that the forecasted SSTA field of a neutral event was a little worse than 596 

that of the El Niño and La Niña events. The forecasted shape of the SSTA field 597 

basically described the actual situation, but the warm pool in the Niño3.4 area was 598 

stronger and bigger than that of the actual situation, which indicated a borderline El 599 

Niño event. The average MAPE between the forecasted field and the actual field was 600 

14.50%, which was big but can be accepted. 601 

We obtained the average values of MAPE of 18 El Niño events, 22 La Niña 602 

events and 20 neutral events, which were 9.52%, 9.88% and 14.67%, respectively, 603 

representing a good SSTA field forecasting ability of our model. 604 

5.4 Forecast of ENSO index 605 

The ENSO index can be represented as the sea surface temperature anomaly 606 

(SSTA) in the Niño-3.4 region (5 ° N-5 ° S, 120 ° -170 ° W) and the ENSO index 607 

forecast was the 3-month forecast (Barnston et al. 2012). So we also can pick up the 608 

ENSO index from the above forecasted SSTA field. The forecast results of the ENSO 609 

index within 20 months can also be obtained. The definition of lead time can be seen 610 

in the reference (Barnston et al. 2012). Therefore, similar to the forecast experiment in 611 

section 5.1, a succession of running 3-month mean SST anomalies with respect to the 612 

climatological means for the respective prediction periods, averaged over the Niño 3.4 613 

region, can be obtained, as demonstrated in Fig. 9.  614 

The evaluation criteria of the ENSO index is the temporal correlation (TC), its 615 
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definition and specific calculation steps can be seen in these literatures (Kathrin et 616 

al.,2016; Nicosia et al. 2013); The TC is often used to measure the prediction effect of 617 

the ENSO index. For example, Barnston et al.in 2012 also used the TC to compare the 618 

forecast skill of 21 real-time seasonal ENSO models. 619 

The forecast results within lead times of 18 months are shown in Fig. 9, which 620 

demonstrate that the forecast results of the ENSO index are good. Within lead time of 621 

12 months, the correlation coefficientTC was 0.8985 and the MAPE value was small, 622 

only 8.91%. In addition, the borderline La Niña event in 2008–2009 was predicted 623 

well. After lead times of 12 months, forecasts began to diverge and the errors started 624 

to increase. Although the correlation coefficientTC remained approximately 0.61, 625 

MAPE reached 18.58%. Therefore, a moderate strength El Niño event that occurred in 626 

2009/10 was not predicted. 627 

We should give more examples to test the ENSO prediction ability of our model. 628 

As in section 5.3, we can divide 60 examples as three types, which are examples of 629 

ElNiño year, LaNiña year and neutral year. Finally, we can obtain the forecast results 630 

of different types of examples in different lead times, as shown in table 4. 631 

From table 4, the average CC TC of 60 experiments was 0.712 and the average 632 

MAPE was 7.62% within 12 months for all seasons of lead time, which indicates that 633 

the overall ENSO forecast ability of our model was good. The forecast results of the 634 

El Niño examples were significantly worse than those of La Niña examples, while the 635 

forecast results of La Niña examples were significantly worse than those of neutral 636 

examples, which show the model forecast ability of the abnormal state was worse than 637 
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the normal state of the ENSO index. Even for the forecast results of El Niño examples, 638 

the average CC TC was still above 0.6 and the average MAPE can be controlled 639 

below 10%, which means the forecast results were still in the acceptable range. Our 640 

model not only accurately predicted the stronger El Niño and La Niña phases but also 641 

the neutral states. But the forecast results in summer were a little worse than those in 642 

winter, as shown in Fig.10. 643 

The ENSO forecast often had a spring predictability barrier (Webster, 1999), 644 

which was most prominent during decades of relatively poor predictability 645 

(Balmaseda et al., 1995).To test our model, the skill should be computed over the 646 

entire time series and separately for seasonal subsets of the time series. From the 647 

table4, we can see that The average cumulative correlation coefficient and MAPE of 648 

winter were compared with those of summer, as shown in Fig.10. The average 649 

cumulative correlation and average cumulative MAPE values between the forecast 650 

values and the actual values changed with time, from which good trends of forecast 651 

results can be seen. As long as the forecast time increased, the cumulative MAPE 652 

increased and the correlation decayed gradually. The forecast results appeared to 653 

diverge. Aalthough the forecast results of the present model in the summer spring 654 

were worse than in the winterautumn, the margin was not high, which means the 655 

model can overcome the “spring predictability barrier,” to some extent. 656 

5.5 Compared with six mature models  657 

Barnston et al. (2012) compared many ENSO forecast models. Based on his 658 

research, we selected four high quality dynamical models, including ECMWF, JMA, 659 
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the National Aeronautics and Space Administration Global Modelling and 660 

Assimilation Office (NASAGMAO) and the National Centre for Environmental 661 

Prediction Climate Forecast System (NCEP CFS; Version1). Two high quality 662 

statistical models also be selected, including the University of California, Los Angeles 663 

Theoretical Climate Dynamics (UCLA-TCD) multilevel regression model and the 664 

NOAA/NCEP/CPC constructed Analogue (CA) model. The detail of the above 665 

models can be seen in these references (ReynoldsReynoldset al., 2002; Luo et al., 666 

2005; Barnston et al., 2012). 667 

We then compared the forecast ability of the above six models with that of our 668 

model. All of the experiments of our model and six other models were conducted 669 

under the same conditions using the same historical data for modelling and the same 670 

initial values to forecast. In the CPC website, there are detailed explanations of six 671 

models’ training samples and the initial values. So we do not need to install all these 672 

models on their own machines and run them for forecasting. We just made training 673 

samples and initial values of our model were the same with those of selected six 674 

models. At an 8-month lead time, the correlation abilityTC of our model for all 675 

seasons combined was 0.613 (Fig. 1110). In brief, the forecast ability of the ECMWF 676 

model was slightly better than that of our model but the ability of the other 5 models 677 

was worse than that of our model. While, in regard to the forecast length, the temporal 678 

correlationTC within 12 months of our model is greater than 0.6, which was superior 679 

to the ECMWF model. In addition, the forecast results of the UCLA-TCD model and 680 

the CPC CA model reduced quickly after 5-month lead times, so the forecast ability of 681 
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our model was more stable than them.  682 

The root mean square error (RMSE) was also examined to assess the 683 

performance of discrimination and calibration. Barnston et al. (2012) believed that all 684 

seasonal RMSE values contributed equally to a seasonally combined RMSE. So we 685 

drew figure 12 11 to show seasonally combined RMSE.  686 

From Fig. 111 0 and Fig. 1211, we can see the highest correlation tend to 687 

have lower RMSE. So the RMSE of our model was slightly higher than that of 688 

ECMWF model, but it was much lower than those of the other 5 models. Figure 11 689 

and Figure 12 is the average CCTC and RMSE of the 240 experiments of compared 690 

with six mature models, covers a variety of different types of ENSO and different lead 691 

time. So those samples should be really representative .  692 

6. Conclusions and discussion 693 

6.1 Conclusions  694 

A new forecasting model of the SSTA field was proposed based on a dynamic 695 

system reconstruction idea and the principle of self-memorization. The approach of 696 

the present paper consisted of the following steps:  697 

(1) The SST field can be time (coefficients)-space (structure) deconstructed 698 

using the EOF method. Take 
1T , 

2T , SOI and EAWMI and consider them as 699 

trajectories of a set of four coupled quadratic differential equations based on the 700 

dynamic system reconstruction idea. The parameters of this dynamic model were 701 

estimated using a GA.  702 

(2) The forecast results of the dynamic model can be improved by the 703 
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self-memorization principle. The memory coefficients in the improved 704 

self-memorization model were obtained using the GA method. 705 

(3) The long-term step-by-step forecast results and cross-validated 706 

retroactive hindcast results of time series 
1T and 

2T are all found to be good, with the 707 

a correlation coefficientCC  of approximately 0.80 and a mean absolute percentage 708 

error the MAPE of less than 15%. 709 

(4) The improved model was used to forecast the SSTA field. The 710 

forecasted SSTA fields of three types of events are accurate. Not only is the forecast 711 

shape similar to the actual field but also the contour lines are similar. 712 

(5) The improved model was also used to forecast the ENSO index. The 713 

average correlation coefficientTC of 60 examples within 12 months is 0.712, and the 714 

MAPE value is small, only 7.62%, which proves that the improved model has better 715 

forecasting results of the ENSO index. Although the forecast results of the model in 716 

the summer were worse than in the winter, the margin was not high, which means that 717 

the model can overcome the spring predictability barrier to some extent. Finally, 718 

compared with the six mature models, the new dynamical-statistical forecasting 719 

model has a scientific significance and practical value for the SST in the eastern 720 

equatorial Pacific and El Niño/La Niña event predictions. 721 

6.2 Discussion  722 

L’Heureux et al.(2013) reported that using different data sets and time periods, 723 

the 2nd EOF is not stable, being entirely due to the strong trend. So we need to do 724 

more experiments to prove that we choose the second mode of EOF to be appropriate, 725 
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and whether different time periods will make us forecast unstable or not. Our original 726 

data is the monthly average SST data from January 1951 to Dec. 2010, which are 60 727 

years. We will increase the length of the data for 20 years (Jan.1931 –Dec.2010), for 728 

10 years (Jan.1941- Dec.2010) and decrease the length of the data for 10 years 729 

(Jan.1961- Dec.2010), for 20 years (Jan.1971- Dec.2010). And then we use the same 730 

method to reconstruct a model and forecast the ENSO index as section5.4. The 731 

prediction results are shown in the table5. 732 

From the table, we can see that in the 60 experiments, the prediction results of 733 

the data period increased by 20 years are the best, and the prediction results of the 734 

data period decreased by 20 years is the worst. This is because the more data we use, 735 

the more information it contain. But from the table we can also see the difference 736 

among forecast results of both TC and MAPE of five different sample data are less, 737 

and no abnormal change suddenly worse or better appear. All these indicate that using 738 

different data sets and time periods, even though may have a certain impact on the 739 

pattern of the 2nd EOF, but the impact on our forecast is not great and it will not 740 

make our forecast unstable. 741 

Actually, how many variables and which variables are used in our model 742 

become a key issue to be resolved. We are a complex four factor differential 743 

equations coupling model. We are a complex coupled model of four factor differential 744 

equations, so we are more concerned with the correlation between each other. The 745 

correlation must be considered as an important criterion to select the factors, but in 746 

order to further verify the correctness of the selection criterion, we have carried out 747 
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the prediction experiments (the 60 cross-validated retroactive hindcasts experiments 748 

of the ENSO index for all seasons combined at lead times of 8 months ) of different 749 

variables. 750 

We can see that for all the forecast results of the models of different variables, 751 

the prediction results of 
1 2, ,SOIT T  is the best among those of the three factors and the 752 

prediction result of 
1 2, ,SOI,EAWMIT T  is the best among those of the four factors. But 753 

the prediction result of 
1 2, ,SOI,EAWMIT T  is best among all, which proves that our 754 

selection factors are correct. In our previous study (Hong et al., 2015), the model of 755 

the Western Pacific subtropical high was established by using the correlations as a 756 

criterion to select factors and their forecast results are also good. Now we use the 757 

correlations as a criterion to select factors is also in line with our previous research.  758 

Because the formula of our model includes a linear combination of 4 variables 759 

(
1 2,t t , SOI, EAWM), statistical forecasting requires independence between predictors. 760 

We can calculate the correlation coefficients between variables, as shown in table 5. 761 

In fact, as Table 5 shows, the correlation coefficients between the factors were all less 762 

than 0.45, indicating the independence between factors. So this does not generate too 763 

much redundancy and can avoid an overfitting problem, which can destroy the 764 

stability of the model. 765 

The definition of overfitting: The learned hypothesis may fit the training set very 766 

well, but fail to predict to new examples (fail to fit additional data or predict future 767 

observations reliably). 768 

The potential for overfitting depends not only on the number of parameters and 769 
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data but also the conformability of the model structure with the data shape, and the 770 

magnitude of model error compared to the expected level of noise or error in the 771 

data(Burnham and Anderson, 2002). So there are many reasons causing the overfitting 772 

phenomenon. But this does not mean having many parameters relative to the number 773 

of observations inevitably causes the overfitting problem (Golbraikh et al., 2003). 774 

There is no evidence that more parameters will be certain to result in overfitting. 775 

Based on the definition of overfitting and the previous studies(Golbraikh et al., 2003; 776 

Everitt and Skrondal,2010), we can judge whether a model is overfitting or not by the 777 

accuracy of prediction results of independent samples (Golbraikh and Tropsha, 2002; 778 

Qin and Li, 2006).  779 

In the sample training, our model does not purposely pursue the high degree of 780 

the training samples fitting and improve the effectiveness of the independent 781 

generalization. In fact in our paper the forecast results of the Cross-validated 782 

retroactive hindcasts (section 5.2) and the independent samples validation (table3 and 783 

table4) are both good. Especially, the independent samples validation of the ENSO 784 

index as the table4, we have carried out the 240 independent sample validation 785 

prediction of four seasons of different ENSO events and the coverage of independent 786 

samples test is very wide. Moreover, compared with 6 mature prediction models, the 787 

forecast results of our model are also good, which prove the overfitting problem does 788 

not exist in our model. According to the previous literature (Islam and Sivakumar, 789 

2002; Sivakumar et al.,2001), we can see that prediction principle and structure of the 790 

phase space reconstruction (PSR) of dynamical system is not the same with the 791 
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traditional neural network and in the small sample situation the forecasting results of 792 

PSR model are better than those of the traditional neural network (Sivakumar et 793 

al. ,2002), which can be verified in the independent sample test (table3 and table4). So 794 

according to the definition of overfitting, we can say the over fitting phenomenon 795 

does not exist in our model. 796 

The introduction of self-memorization essentially introduces a lot of new 797 

coefficients, which may cause an overfitting problem. Because we have selected a 798 

model of four variables, there is a total of 62 parameters. In order to avoid the 799 

overfitting problem, the sample sizes are more than 10% of the amount of parameters. 800 

So our sample size is greater than 620 data to avoid the overfitting problem. If we 801 

choose the model of three variables, the parameters in which will be less, the sample 802 

size in this situation can be less. But the forecast results may be a little worse, based 803 

on the analysis in section 2.3. So the length of training samples is related to the 804 

number of parameters of our model. 805 

Also, we have tried to detrend our data before the model constructed. But we 806 

found the results didn’t change too much. That is mean our model is not very 807 

sensitive to climate change, so the detrended data has little effect for our model to 808 

improve the forecast effect.  809 

Compared with the original model, why the improved model has good forecast 810 

results and can overcome the spring predictability barrier to some extent are as follow: 811 

Recently, many studies have pointed out that spring is the most unstable season of the 812 

air - sea interaction and the error is likely to develop or grow in the spring, resulting in 813 
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the spring predictability barrier (Zhang et al, 2012; Philander et al., 1992). When the 814 

original model uses the indexes in summer as the initial values to predict, the SOI 815 

factor representing the air-sea interaction is most unstable in the spring and the 816 

EMWMI factor does not have much influence on ENSO in summer, so the forecast 817 

results using the indexes in summer as the initial values are certainly much worse than 818 

those using the indexes in the winter as the initial values. That is why our original 819 

model does not overcome the spring predictability barrier.  820 

However, the introduction of the self-memorization dynamics principle can help 821 

our model overcome the spring predictability barrier to some extent. Although the 822 

lead time is still summer (such as JJA), the information of the initial value actually 823 

contains the previous p + 1 month (in this case p = 6, which contains the information 824 

of the previous seven months, including the information of 1 2,T T  , SOI, EMWMI 825 

factor in winter (January, February), spring (March, April, May) and summer (June 826 

and July)). From the dynamical analysis, in this situation, the information and 827 

interaction relationship of four factors have been a long period (from winter to 828 

summer) accumulated, containing much air-sea interaction processes and winter 829 

monsoon continued abnormal information, so the forecast results of our improved 830 

model will be much better than the original model which simply uses only one initial 831 

value. That is why the improved model overcomes the spring predictability barrier to 832 

some extent. 833 

The forecast results of our model are good, but it still has some problems: 834 

 (1) The inclusion of these terms and the physical processes do these terms in 835 
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equation (2) represent are important, especially for the discussion of dynamical 836 

characteristics of the dynamical model. But now we are difficult to give a clear 837 

meaning. Now the main work of our paper is the prediction experiments of the model. 838 

For the reason of time and length, this paper mainly discusses the prediction results of 839 

the model. The physical processes do these terms represent and the discussion of the 840 

dynamical characteristics of the model will be the focus of our next work. Before this, 841 

we have also used the Takens’ delay embedding theorem to reconstruct the dynamical 842 

model of the Western Pacific subtropical high(WPSH). And Based on the 843 

reconstructed dynamical model, dynamical characteristics of WPSH are analyzed and 844 

an aberrance mechanism is developed, in which the external forcings resulting in the 845 

WPSH anomalies are explored, which have been published (Hong et al., 2016). We 846 

also study the bifurcation and catastrophe of the West Pacific subtropical high ridge 847 

index of a nonlinear model (Hong et al., 2017). Based on our previous method and 848 

work, our next work is to analyse the physical processes and the dynamical 849 

characteristics of the SST field. 850 

Although the reason why the improved model has good forecast results has 851 

disucussed in the section6.2, the deep physical mechanisms that the proposed model 852 

has dealt with is not very clear, so its dynamical characteristics should be further 853 

analysed. 854 

    (2)The experiments in the present study have proven that the forecasting results 855 

of the improved model are good for large-scale systems, such as ENSO events, and 856 

the forecasting period has been extended. However, for small-scale systems, such as 857 
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Hurricanes, whether the forecast results could be improved using the present 858 

improved model needs to be further verified.  859 

(3) Our paper focuses primarily on these defined indices with 
1 2,T T to 860 

reconstruct a prediction model. Maybe, we can select variables (predictor) based on 861 

EOF analysis and our model may be a more physically oriented model. Maybe we can 862 

learn from Yim et al. (2013; 2015) to draw correlation maps between these fields and 863 

the SSTA field and select the predictors from physical considerations. All these above 864 

questions require that a lot of experiments to be carried out. 865 

These items will be our future work.  866 
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APPENDIX A: THE PRINCIPLE OF DYNAMICAL MODEL 876 

RECONSTRUCTION 877 

Suppose that the physical law of a nonlinear system going by over time can be 878 

expressed as the following difference form: 879 
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where
if  is the generalized nonlinear function of 

Ni qqqq ,...,,...,, 21
, N  is the number 881 

of variables, and M is the length of observed data. 
1 2( , ,..., ,..., )j t j t j t j t

i i Nf q q q q    can be assumed 882 

to contain two parts: 
jkG representing the expanding items which contain variable 883 

iq ,
i kP just representing the corresponding parameters which are real numbers 884 

( 1, 2,...i N , Mj ,...2,1 , 1,2,...,k K ).  885 

It can be supposed as follows: 886 
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GPD   is the matrix form of Eq.(A2) , in which 888 
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Parameters of the above equation can be determined through inverting the 890 

observed data. Vector P which satisfies the above equation can be solved, based on a 891 

given vector D. Assuming q is unknown, it is a nonlinear system. However, assuming 892 

P is unknown, it is a linear system.  893 

With the restriction ( ) ( )TS D GP D GP    as a minimum, GA is introduced as an 894 

optimization solution search in the model parameters space. 895 

Assuming that the parameters matrix P  is the population (solutions), the 896 

( ) ( )TS D GP D GP    is an objective function, 
1

il
S

  is the value of individual 897 

fitness, and 
1

n

i

i

L l


  is the value of total fitness. The operating steps of GA include: 898 

creation and coding of initial population (solutions), fitness calculation, the choice of 899 
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male parents, crossover and variation, etc. A detailed theoretical explanation can be 900 

got  from  Wang (2001). The step length is 1 month during the calculation. After 901 

optimization searches and genetic operations, the target value can be rapidly 902 

converged on and each optimal parameter of the dynamical equations can be obtained. 903 

Through the above approach, we can obtain parameters of a nonlinear 904 

dynamical system, and reconstruct the nonlinear dynamical equations from observed 905 

data. 906 

 907 

APPENDIX B: THE MATHEMATICAL PRINCIPLE OF 908 

SELF-MEMORIZATION DYNAMICS OF SYSTEMS 909 

The dynamical equations of a system can be expressed as: 910 

( , , )i
i

x
F x t

t






1,2,...,i J                               (B1) 911 

where J  is an integer， ix  is the ith variable of the system state, and   is 912 

the parameter. Equation (B1) represents the relationship between a source function 913 

F  and a local change of x  . Obviously, x  is a scalar function with time t  and 914 

space 0r . A set of time 
0[ ... ... ]p qT t t t  can be considered, where 0t  is an initial 915 

time. A set of space [ ... ... ]a iR r r r  can be considered, where ir  is a spatial point. 916 

An inner product in space 2L :T R  is defined by: 917 

2( , ) ( ) ( ) , ,
b

a
f g f g d f g L                    (B2) 918 

   Accordingly, a norm can be defined as:  919 

1
2 2[ ( ( ) ]

b

a
f f d    920 



 

44 
 

For a completion 2L , it can become a Hilbert space H . A generalized one 921 

in H can be regarded as a solution of the multi-time model. By introducing a 922 

memorization function ( , )r t , we can obtain:  923 

0 0

( ) ( ) ( , )
t t

t t

x
d F x d      






             (B3) 924 

where r  in ( , )r t  can be dropped through fixing on the spatial point 
0r . Suppose 925 

that function ( , )r t  and variable x  etc. are all continuous, differentiable and 926 

integrable, an integration by the left parts of Eq. (B3) can be made as: 927 

0 0
0 0( ) ( ) ( ) ( ) ( ) ( ) ( )

t t

t t

x
d t x t t x t x d        




  

     (B4) 928 

where ( ) ( ) /t t t     . The mean value theorem can be introduced into the third 929 

term in Eq. (B4), the following equation can be obtained: 930 

0
0 0( ) ( ) ( )[ ( ) ( )]

t
m

t
x d x t t t                (B5) 931 

where 
0 0( ) ( ),m

m mx t x t t t t    . Substituting Eq. (B4) and Eq. (B5) in Eq. (B3) and 932 

carrying out an algebraic operation, the following equation can be obtained: 933 

0

0 0
0 0

( ) ( ) ( ) 1
( ) ( ) ( ) ( ) ( , )

( ) ( ) ( )

t
m

t

t t t
x t x t x t F x d

t t t

  
   

  


         (B6) 934 

Because the x  value which is at initial time 
0t  and middle time 

mt , only on 935 

the fixed point 
0r  itself , relates to the first term and the second term in Eq. (B6) , 936 

they are be called as a self-memory term. Also, we can call the third term as an 937 

exogenous effect, i.e., which is contributed by other spatial points. 938 

Similarly as Eq. (B4), for multi-time 
it , 0, 1..., ,i p p t t    , it gives  939 
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1 2

1 0

( ) ( ) ... ( ) ( ) ( , )
p p

p p p

t t t t

t t t t

x x x
d d d F x d            

  

   

   

  
   

      .  940 

After the same term ( ) ( ), 1, 2,...,0i it x t i p p       was eliminated, we 941 

have 942 

0

1( ) ( ) ( ) ( ) [ ( ) ( )] ( ) ( ) ( , ) 0
p

t
m

p p i i i
t

i p

t x t t x t t t x t F x d       


  



       (B7) 943 

As a matter of convenience, we set )(),(),(),( 0000 txxtxxtt tt   ; the 944 

following text uses similar notations. Then, Eq. (B7) can be expressed as: 945 
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Setting 0, 11   p

m

pp xx  , the Eq. (B8) can be written as: 947 
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     (B9) 948 

1S is called as a self-memory term and 
2S is called as an exogenous effect term. 949 

For the convenience of calculations, the above self-memorization equation can 950 

be discretized. The differential by difference and the summation can replace the 951 

integration in Eq. (B9), and the mean of two values which are at adjoining times; i.e., 952 

1

1
( )

2

m

i i i ix x x y   can simply replace
m

ix .                      953 

Taking an equal time interval 11   iii ttt and incorporating i  and t , 954 

we can obtain a discretized self-memorization equation as follows: 955 
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1

0

),(
pi pi

iiit ixFyx                    (B10) 956 

where F is the dynamic kernel of the self-memorization equation,
t

ii
i






)( 1   ; 957 

t

i
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Based on Eq. (B10), the above technique performed computations and the 959 

forecast can be called as a self-memorization principle. 960 

 961 
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Fig. 1 (a, c) First and second modes of the EOF deconstruction of the SSTA field, and (b, d) the 1364 

corresponding PC time series. 1365 
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Fig.2 Forecast results of the first time coefficient series 1T  错误!未找到引用源。 (a) and the second 1370 

time coefficient series 2T 2T   (b)of the SSTA field by the original model 1371 
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Fig.3The cross-validated retroactive hindcast results of the first time coefficient series 1T  1T  (a)and 1387 

the second time coefficient series 2T 2T  (b)of the SSTA field by the original model 1388 
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Fig. 4. Long-term step-by-step forecast results of the first time coefficient series 1T 1T  (a)and the 1402 

second time coefficient series 2T 2T  (b)of the SSTA field by the improved model 1403 
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Fig. 5. The cross-validated retroactive hindcast results of the first time coefficient series 1T   (a)and 1409 

the second time coefficient series 2T   (b)of the SSTA field by the improved model 1410 
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Fig.6. The forecast SSTA field(a) and the actual SSTA field (b)of an El Niño event (Dec.1997) 1420 
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Fig.7. The forecast SSTA field(a) and the actual SSTA field (b)of a La Niña event (Dec.1999) 1432 

 1433 

 1434 

 1435 

 1436 

 1437 

 1438 

 1439 



 

71 
 

 1440 

 1441 

 1442 

Fig.8. The forecast SSTA field(a) and the actual SSTA field (b)of neutral event (Nov.2002) 1443 
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Fig.9. The improved dynamical-statistical model prediction of the ENSO index  1446 
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Fig.10. The cumulative correlation coefficients(CCs) (a) and cumulative mean absolute percentage 1457 

error(MAPE) (b) changing with time of different lead times 1458 
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Fig. 1110. Temporal correlation between model forecasts and observations for all seasons combined, as 1461 

a function of lead time. Each line highlights one model. 1462 
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Fig . 1211. RMSE in standardized units, as a function of lead time for all seasons combined. Each line 1479 

highlights one model.  1480 
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 1494 

Table: 1495 

Table 1. The correlation analysis between the front two time series
1 2,T T  and nine impact factors 1496 

factors 1u
 2u

 PNA DMI SOI PDOI EAWMI OLR SSH 

1T
 0.3161 0.5684 0.4386 -0.3457 0.7734 0.4081 0.6284 0.3287 0.3363 

2T
 0.2118 0.4181 0.2560 -0.2345 0.5232 0.3065 0.4825 0.1816 0.2169 

 1497 

Table1. The forecast results of the models of different variables 1498 

The model The forecast skill of 60 cross-validated retroactive hindcasts 

experiments of the ENSO index for all seasons combined at lead 

times of 8 months 

the temporal correlation the root mean square error 

One variable（ 1T ） 0.5051 0.8075 

Two variables（
1 2,T T ） 0.5613 0.7679 

Three variables（ 1 2, ,T T SOI ） 0.6027 0.7275 

Four variables

（ 1 2, , ,T T SOI EAWMI ） 

0.6344 0.6728 

Five variables

（
1 2 1, , , ,T T SOI EAWMI u ） 

0.5923 0.7344 

Six variables

（
1 2 1, , , , ,T T SOI EAWMI u PNA） 

0.5528 0.7806 
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 1531 

Table2.The correlation coefficient(CC ) and Mean absolute percentage error(MAPE) of long-term 1532 

fitting test when the retrospective order p  is different  1533 

p  4 5 6 7 8 9 10 

The 

forecast 

results of 

long-term 

fitting test 

CC 0.75 0.73 0.81 0.74 0.70 0.72 0.68 

MAPE 18.42% 19.36% 14.56% 20.39% 25.31% 24.18% 27.33% 

p  11 12 13 14 15 16  

The 

forecast 

results of 

long-term 

fitting test 

CC 0.68 0.70 0.65 0.62 0.60 0.62  

MAPE 28.10% 26.58% 30.91% 33.14% 34.97% 33.56%  

 1534 
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 1536 
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 1538 
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 1539 

 1540 

 1541 

 1542 

 1543 

 1544 

 1545 

 1546 

 1547 

 1548 

Table3. The forecast results of 1T and 2T in different examples within 6 and 12 months 1549 

Forecast events 

The results within 

6-months 

The results within 

12-months 

CC MAPE CC MAPE 

The average of 18 El Niño examples of 1T   0.824 8.45% 0.719 12.67% 

The average of 22 La Niña examples of 1T  0.846 7.68% 0.740 11.28% 

The average of 20 Neutral examples of 1T  0.885 6.23% 0.789 9.85% 

The average of total 60 examples of 1T  0.850 7.41% 0.748 10.95% 

The average of 18 El Niño examples of 2T   0.811 8.79% 0.703 13.28% 

The average of 22 La Niña examples of 2T  0.833 7.35% 0.731 11.96% 

The average of 20 Neutral examples of 2T  0.896 6.68% 0.795 10.08% 
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 1550 

 1551 

 1552 

 1553 

 1554 

 1555 

 1556 

 1557 

 1558 

 1559 

 1560 

Table. 4. The TC and the MAPE between model forecasts and observations within 12 months for 1561 

Nov.–Jan., Dec.–Feb., and Jan.–Mar. as lead time of winter, for Feb.–Apr. , Mar.–May and Apr.–June as 1562 

lead time of spring, for May-July, June-August and July-Sep. as lead time of summer and for 1563 

August-Oct., Sep.-Nov. and Oct.-Dec. as lead time of autumn.  1564 

Forecast 

events 

Lead time of 

all seasons 

combined 

Lead time of 

summer 

(MJJ-JJA-JAS) 

Lead time of 

autumn 

(ASO-SON-ON

D) 

Lead time of 

winter 

(NDJ-DJF-JF

M) 

Lead time of 

spring 

(FMA-MAM-AM

J) 

 CTC 
MAP

E 
CTC MAPE CTC MAPE CTC MAPE CTC MAPE 

The average of 

18 El Niño 

examples 

0.60

4 
9.70% 

0.56

9 

10.33

% 
0.632 8.85% 

0.67

7 
8.02% 0.538 11.6% 

The average of 

22 La Niña 

examples 

0.62

5 
8.97% 

0.58

1 
9.82% 0.645 8.41% 

0.69

5 
7.83% 0.579 9.82% 

The average of total 60 examples of 2T  0.842 7.64% 0.740 11.71% 
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The average of 

20 Neutral 

examples 

0.79

8 
5.96% 

0.75

2 
6.86% 0.831 5.31% 

0.84

4 
4.60% 0.765 7.07% 

The average of 

total 60 

examples 

0.71

2 
7.62% 

0.63

3 
8.51% 0.786 6.88% 

0.77

6 
6.52% 0.653 8.03% 

 1565 

 1566 

Table. 4. Temporal correlation(CC) and the mean absolute percentage error (MAPE) between model 1567 

forecasts and observations within 12 months for Nov–Jan, Dec–Feb, and Jan–Mar as lead time.of 1568 

winter and for May-July, June-August and July-Sep. as lead time of summer.  1569 

 1570 

 1571 

 1572 

 1573 

 1574 

 1575 

 1576 

 1577 

Forecast events 

Lead time of all 

seasons 

combined 

Lead time of 

summer 

(MJJ-JJA-JAS) 

Lead time of 

winter 

(NDJ-DJF-JFM) 

CC MAPE CC MAPE CC MAPE 

The average of 18 El 

Niño examples 
0.604 9.70% 0.569 10.33% 0.677 8.02% 

The average of 22 

La Niña examples 
0.625 8.97% 0.581 9.82% 0.695 7.83% 

The average of 20 

Neutral examples 
0.798 5.96% 0.752 6.86% 0.844 4.60% 

The average of total 

60 examples 
0.712 7.62% 0.633 8.51% 0.776 6.52% 
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Table5. The forecast results of the different data periods 1582 

Forecast 

events 

The data 

periods（Jan. 

1951-Dec.201

0）Lead time 

of all seasons 

combined 

The data 

periods（Jan. 

1931- 

Dec.2010）

Lead time of 

all seasons 

combined 

The data periods

（Jan. 1941- 

Dec.2010）Lead 

time of all 

seasons 

combined 

The data 

periods（Jan. 

1961- 

Dec.2010）

Lead time of 

all seasons 

combined 

The data periods

（Jan. 1971- 

Dec.2010）Lead 

time of all 

seasons combined 

 TC 
MAP

E 
TC MAPE TC MAPE TC MAPE TC MAPE 

The average of 

18 El Niño 

examples 

0.60

4 
9.70% 

0.68

3 
9.02% 0.642 9.35% 

0.57

2 

10.15

% 
0.551 10.44% 

The average of 

22 La Niña 

examples 

0.62

5 
8.97% 

0.70

1 
8.33% 0.675 8.55% 

0.58

9 
9.42% 0.567 9.82% 

The average of 

20 Neutral 

examples 

0.79

8 
5.96% 

0.84

5 
5.12% 0.821 5.56% 

0.74

6 
6.21% 0.721 6.58% 

The average of 

total 60 

examples 

0.71

2 
7.62% 

0.77

1 
7.14% 0.740 7.38% 

0.68

0 
7.96% 0.652 8.15% 
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Table5. The correlation coefficients among four factors 1584 

Correlation 

coefficients 

1T  2T  SOI EAWMI 
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1T   0.419 0.401 0.337 

2T  0.419  0.424 0.356 

SOI 0.401 0.424  0.408 

EAWMI 0.337 0.356 0.408  
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