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Abstract: With the objective of tackling the problem of inaccurate long-term El Niño 26 

Southern Oscillation (ENSO) forecasts, this paper develops a new 27 

dynamical-statistical forecast model of sea surface temperature anomaly (SSTA) field. 28 

To avoid single initial prediction values, a self-memorization principle is introduced 29 

to improve the dynamic reconstruction model, thus making the model more 30 

appropriate for describing such chaotic systems as ENSO events. The improved 31 

dynamical-statistical model of the SSTA field is used to predict SSTA in the 32 

equatorial eastern Pacific and during El Niño and La Niña events. The long-term 33 

step-by-step forecast results and cross-validated retroactive hindcast results of time 34 

series 1T and 2T are found to be satisfactory, with a pearson correlation coefficient of 35 

approximately 0.80 and a mean absolute percentage error (MAPE) of less than 15%. 36 

The corresponding forecast SSTA field is accurate in that not only is the forecast 37 

shape similar to the actual field, but the contour lines are essentially the same. This 38 

model can also be used to forecast the ENSO index. The temporal correlation 39 

coefficient is 0.8062, and the MAPE value of 19.55% is small. The difference 40 

between forecast results in spring and those in autumn is not high, indicating that the 41 

improved model can overcome the spring predictability barrier to some extent. 42 

Compared with six mature models published previously, the present model has an 43 

advantage in prediction precision and length, and is a novel exploration of the ENSO 44 

forecast method.  45 
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surface temperature field; long-term forecast of ENSO 48 

1. Introduction 49 

The El Niño Southern Oscillation (ENSO), the well-known coupled atmosphere 50 

–ocean phenomenon, was firstly proposed by Bjerknes (1969). The ENSO 51 

phenomenon can influences regional and global climates, so the prediction of ENSO 52 

has received considerable public interest (Rasmusson and Carpenter, 1982; Glantz et 53 

al., 1991).  54 

Over the past two to three decades, one might reasonably expect the ability to 55 

predict warm and cold episodes of ENSO at short and intermediate lead times to have 56 

gradually improved (Barnston et al., 2012). Many countries have been focusing on 57 

ENSO forecasts since the 1990s, and the ENSO forecast has become one of the 58 

important research topics in the International Climate Change and Predictability 59 

Research plan. The U.S. International Research Institute for Climate and Society, the 60 

U.S. Climate Prediction Centre, Japan Meteorological Agency, and European Centre 61 

for Medium-Range Weather Forecasting have developed different coupled 62 

atmosphere–ocean models to forecast ENSO (Saha et al., 2006; Molteni et al., 2007) . 63 

The forecast models can generally be divided into two types (Palmer et al., 2004). 64 

The first type is typified by a dynamic model, which mathematically expresses 65 

physical laws that govern how the ocean and the atmosphere interact. The second type 66 

is typified by a statistical model, which requires large a amount of historical data and 67 

analyses the data to do forecasting (Chen et al., 1995; Moore et al., 2006). 68 

Over the past three decades, ENSO predictions have made remarkable progress, 69 

http://www.google.com.hk/url?sa=t&rct=j&q=IRI&source=web&cd=2&ved=0CDYQFjAB&url=%68%74%74%70%3a%2f%2f%69%72%69%2e%63%6f%6c%75%6d%62%69%61%2e%65%64%75%2f&ei=4XvTUcmLOsTJkwWo7IHoAQ&usg=AFQjCNG-SWlaVIMXHJqsz1SxZOv9TvJ1Hw&bvm=bv.48705608,d.dGI&cad=rjt
http://www.google.com.hk/url?sa=t&rct=j&q=CPC&source=web&cd=2&cad=rja&ved=0CDYQFjAB&url=%68%74%74%70%3a%2f%2f%77%77%77%2e%63%70%63%2e%6e%63%65%70%2e%6e%6f%61%61%2e%67%6f%76%2f&ei=e3vTUaXHG4rYkAXO94HwAw&usg=AFQjCNECcdXAbmMTWNODe8uOnFY9kjsWug&bvm=bv.48705608,d.dGI
http://www.google.com.hk/url?sa=t&rct=j&q=JMA&source=web&cd=1&cad=rja&ved=0CCwQFjAA&url=%68%74%74%70%3a%2f%2f%77%77%77%2e%6a%6d%61%2e%67%6f%2e%6a%70%2f%6a%6d%61%2f%69%6e%64%65%78%65%2e%68%74%6d%6c&ei=DX3TUYGLOoK8kgXXtYDwBQ&usg=AFQjCNEpj_2tE0cjgecbx-EmYedqG8l2yA&bvm=bv.48705608,d.dGI
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reaching a stage where reasonable statistical and numerical forecasts (Jin et al., 70 

2008)can be made 6–12 months in advance (Wang et al., 2009a). . However, there are 71 

three problems remaining to be resolved (Zhang et al., 2003a): (1) The current ENSO 72 

predictions are mainly limited to the short term, such as annual and seasonal 73 

predictions; (2) Although the representation of ENSO in coupled models has 74 

advanced considerably during the last decade, several aspects of the simulated 75 

climatology and ENSO are not well reproduced by the current generation of coupled 76 

models. The systematic errors in SST are often very large in the equatorial Pacific, 77 

and model representations of ENSO variability are often weak and/or incorrectly 78 

located (Neelinet al. 1992; Mechoso et al. 1995; Delecluse et al. 1998; Davey et al. 79 

2002). (3) Coupled models of ENSO predictions initialized from observed initial 80 

states tend to adjust towards their own climatological mean and variability, leading to 81 

forecast errors. The errors associated with such adjustments tend to be more 82 

pronounced during boreal spring, which is often called the ‘‘spring predictability 83 

barrier’’ (Webster et al., 1999). More efficient models are therefore desired (Belkin 84 

and Niyogi, 2003; Weinberger and Saul, 2006). Therefore, the idea of combining 85 

dynamical and statistical methods to improve weather and climate prediction has been 86 

developed in many studies (Huang et al., 1993;Yu et al., 2014a; Yu et al.,2014b). By 87 

introducing genetic algorithms (GAs), Zhang et al. (2006) inverted and reconstructed 88 

a new dynamical-statistical forecast model of the tropical Pacific sea surface 89 

temperature (SST) field using historic statistical data (Zhang et al., 2008). However, 90 

there is one flaw in the forecast model: the time-delayed SST field. This is because 91 
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ENSO is a complicated system with many influencing factors. To overcome 92 

information insufficiency in the forecast model, Hong et al. (2014) selected the 93 

tropical Pacific SST, SSW and SLP fields as three modelling factors and utilized the 94 

GA to optimize model parameters. 95 

However, the above dynamical prediction equations which were ,proposed by 96 

Hong et al.(2014), greatly depend on a single initial value, creating long-term 97 

forecasts over 8 months that diverged significantly. These unsatisfactory results 98 

indicate that this model needs to be improved. Cao (1993) first proposed the 99 

self-memorization principle, which transforms the dynamical equations with the 100 

self-memorization equations, wherein the observation data can determine the memory 101 

coefficients. This method has been widely used in forecast problems in environmental, 102 

hydrological and meteorological fields (Feng et al., 2001; Gu, 1998; Chen et al., 103 

2009). The method can avoid the question of initial conditions for the differential 104 

equations, so it can be introduced here to improve the proposed dynamical forecast 105 

model. 106 

Therefore, an improved dynamical-statistical forecast model of the SST field 107 

and its impact factors with a self-memorization function was developed. The 108 

improved model can absorb the information from past observations.   109 

This paper is organized as follows: Research data and forecast factors are 110 

introduced in section 2. In Section 3 the reconstruction of the dynamical model of 111 

SSTA field is described. To improve the reconstruction model, the self-memorization 112 

principle is introduced in Section 4. Model forecast experiments are described in 113 
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Section 5, and conclusions are given in Section 6. 114 

2. Research data and forecast factors 115 

2.1 Data  116 

The monthly average SST data were obtained from the UK Met Office Hadley 117 

Centre for the region (30°S-30°N；120°E -90°W). The gridded 1°  1°Met Office 118 

Hadley Sea Ice and SST dataset (HadISST1; Rayner et al. 2003) includes both in situ 119 

and available satellite data. The sea areas provide important information on 120 

ocean-atmosphere coupling in the East and West Pacific Ocean and the El Niño /La 121 

Niña events. The reanalysis data, zonal winds and sea level pressures were obtained 122 

from the National Center for Environmental Forecast of America and the National 123 

Center for Atmospheric Research (Kalnay et al., 1996). The sea surface height (SSH) 124 

field was obtained from Simple Ocean Data Assimilation (SODA) data (James and 125 

Benjamin, 2008). Outgoing longwave radiation (OLR) was obtained from the 126 

National Oceanic and Atmospheric Administration (NOAA) satellites, at a resolution 127 

of 0.5° × 0.5°(Liebmann and Smith, 1996).The Southern Oscillation Index (SOI) data 128 

were obtained from the Climate Prediction Center (CPC). The time series of all data 129 

were from Jan. 1951 to Dec. 2010, 720 months in total. 130 

2.2 EOF deconstruction 131 

The sea surface temperature anomaly (SSTA) field can be calculated from the 132 

SST field and can be deconstructed into time (coefficients)-space (structure) using the 133 

empirical orthogonal function (EOF) method. Detailed information on the EOF 134 

method can be seen in the related references (Dommenget & Latif, 2002). We have 135 
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used covariance matrix，because the covariance matrix was selected to diagnose the 136 

primary patterns of co-variability in the basin-wide SSTs, rather than the patterns of 137 

normalized covariance (or correlation matrix). 138 

We used the smooths function with MATLAB to smooth the SSTA field before 139 

the EOF deconstruction, which is five points two times moving, mainly filtering out 140 

some noise points and outliers. Then an EOF analysis of smoothed anomalies was 141 

performed, and the first two SSTA EOFs are shown in Figs. 1a and 1c. The principal 142 

component (PC) time series corresponding to the first and second EOFs are shown in 143 

Figs. 1b and 1d. The first EOF pattern, which accounted for 61.33% of the total SSTA 144 

variance, represented the mature ENSO phase (El Niño or La Niña), and the 145 

corresponding PC time series was highly correlated (with a correlation coefficient of  146 

0.85) with the cold tongue index (SST anomaly averaged over 4 °S–4 ° N, 180°–90 ° 147 

W) over the whole period.  The second EOF, accounting for 14.52% of the total 148 

SSTA variance, indicated the ENSO signal beginning to enhance. Compared with the 149 

first mode, these were slightly attenuated in terms of the scope and intensity. The 150 

above analysis is similar to the EOF analysis of the SSTA field in the previous studies 151 

(Johnson et al., 2000;Timmermann et al., 2001). This indicates that the front two 152 

variance contribution modes can describe the main characteristics of the SSTA field 153 

and El Niño/La Niña. Therefore, we can choose the
1 2,T T  time series EOF 154 

decomposition modes as the modelling objects. 155 

2.3 Selection of other prediction model factors 156 

Considering the complexity of computation, the amount of variables in the 157 
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equations of our model can’t be too large, usually 3 or 4 for the best. This has been 158 

explained in our previous studies (Zhang et al., 2006; Zhang et al., 2008).  If there are 159 

more than 4 variables in the modeling equation, it will cause the amount of 160 

parameters such as 
1 2 1 2, ,... , , ,... ,...n na a a b b b too large. The huge computation makes it 161 

difficult to be precisely modeled. Thus, the total number of parameters in the model of 162 

five variables was 102, which may cause an overfitting problem. Hence, when we 163 

selected the model of five or six variables which entailed large amounts of 164 

computation that made precision difficult, and too many parameters might cause an 165 

overfitting phenomenon. If we choose only two or even fewer variables, the forecast 166 

performance is poor too. Too few variables cause too small reconstructed parameters, 167 

resulting in amounts of important information missing out in the model. Thus, four 168 

variables are best for dynamically and accurately modeling. Because we have chosen 169 

two time series in section2.2 as the modeling objects, now we should select the other 170 

two ENSO intensity impact factors. 171 

The ENSO intensity impact factor is an important issue in ENSO prediction. 172 

Previous studies have been completed in this area, which found that teleconnection 173 

patterns, temperature, precipitation, wind and SSH may affect ENSO strength. For 174 

example, Trenberth et al. (1998) noted that PNA, SOI and OLR in the Pacific 175 

Intertropical Convergence Zone (ITCZ) are all closely related to ENSO. 176 

Webster(1999) pointed out after the 1970, Indian Ocean dipole (IOD) is not only 177 

affected by ENSO, but also affected the strength of ENSO (Ashok et al., 2001). Yoon 178 

and Yeh (2010) reported that the Pacific Decadal Oscillation (PDO) disrupts the 179 
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linkage between El Ni˜no and the following Northeast Asian summer monsoon 180 

(NEASM) through inducing the Eurasian pattern in the mid-high latitudes. The vast 181 

majority of studies (Tomita and Yasunari, 1996; Zhou and Wu, 2010; Kim et al., 2017) 182 

have concentrated on the impacts of ENSO on the East Asian winter 183 

monsoon( EAWM). During the EAWM season, ENSO generally reaches its mature 184 

phase and has the most prominent impact on the climate. Wang et al. (1999a) and 185 

Wang et al. (1999b) suggested that the zonal wind factors in the eastern and western 186 

equatorial Pacific play a critical role in the phase of transition of the ENSO cycle, 187 

which could excite eastward propagating Kelvin waves and affect the SSTA in the 188 

equatorial Pacific. Zhao et al. (2012) analyzed the characteristics of the tropical 189 

Pacific SSH field and its impact on ENSO events.  190 

Based on the above analysis, we have selected nine factors, which may be 191 

closely related with the ENSO index (Niño3.4). 192 

(1)The zonal wind in the eastern equatorial Pacific factor (u1) was calculated 193 

as the grid-point average of zonal wind in the area [5° S ~ 5° N, 150° W ~ 90° W]. 194 

(2) The zonal wind in the western equatorial Pacific factor (u2) was calculated 195 

as the grid-point average of zonal wind in the area [0° ~ 10° N; 135° E ~ 180° E]. 196 

(3) The PNA teleconnection factor was obtained from the CPC. 197 

(4) the dipole mode index factor (DMI) was obtained from SSTA for 198 

June-July-August (JJA) based on Saji(1999) method. 199 

      (5) The SOI factor was obtained from the CPC. 200 

      (6) The PDOI factor was obtained from department of Atmospheric Sciences 201 
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in the university of Washington. The web is 202 

http://tao.atmos.washinton.edu/pdo/RDO.latest. 203 

      (7) The EAWM index (EAWMI) factor was proposed by Yang et al. (2002), 204 

which is defined by the meridional 850-hPa winds averaged over the region (20° 205 

~40°N, 100°~140°E). 206 

(8) The OLR in the ITCZ factor was calculated as the grid-point average of 207 

OLR in the area [10°N～20°N，120°E～150°E]. 208 

(9) The SSH factor was calculated as the grid-point average of the SSH data in 209 

the area [10° S ~ 10° N; 120° E ~ 60° W]. 210 

A correlation analysis of the above factors was carried out and the results are 211 

shown in Table 1. 212 

Table 1 shows that SOI and EAWMI have the stronger correlation with the 213 

front two time series
1 2,T T  than the other 7 factors. The results are also consistent with 214 

previous research (Clarke and Van Gorder, 2003; Drosdowsky, 2006; Zhang et al., 215 

1996; Wang et al., 2008; Yang and Lu, 2014). Therefore, the first time series
1T , the 216 

second time series 
2T , SOI and EAWMI will be selected as prediction model factors. 217 

3. Reconstruction of dynamical model based on GA 218 

Takens’ delay embedding theorem (Takens, 1981) provides the conditions under 219 

which a smooth attractor can be constructed from observations made with a generic 220 

function. Later results replaced the smooth attractor with a set of arbitrary 221 

box-counting dimensions and the class of generic functions with other classes of 222 

functions. Takens had shown that if we measured any single variable with sufficient 223 

http://tao.atmos.washinton.edu/pdo/RDO.latest
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accuracy for a long period of time, it would be possible to construct the underlying 224 

dynamical structure of the entire system from the behavior of that single variable 225 

using delay coordinates and the embedding procedure. It was therefore possible to 226 

construct a dynamical model of system evolution from the observed time series. 227 

Introducing this idea here, four time series of the 
1T , 

2T , SOI and EAWMI factors 228 

were chosen to construct the dynamical model. 229 

The basic idea of statistical-dynamical model construction is discussed in 230 

Appendix A and was introduced in our previous work (Zhang et al., 2006; Hong et al., 231 

2014). 232 

A simplified second-order nonlinear dynamical model can be used to depict the 233 

basic characteristics of atmosphere and ocean interactions (Fraedrich, 1987). Suppose 234 

that the following nonlinear second-order ordinary differential equations are taken as 235 

the dynamical model of reconstruction. In the equations, 
1 2 3 4, , ,x x x x were used to 236 

represent the time coefficient series of
1T , 

2T , SOI and EAWMI.  237 

2 2 2 21

1 1 2 2 3 3 4 4 5 1 6 2 7 3 8 4 9 1 2 10 1 3 11 1 4 12 2 3 13 2 4 14 3 4

2 2 2 22

1 1 2 2 3 3 4 4 5 1 6 2 7 3 8 4 9 1 2 10 1 3 11 1 4 12 2 3 13 2 4 14 3 4

3

1

dx
a x a x a x a x a x a x a x a x a x x a x x a x x a x x a x x a x x

dt

dx
b x b x b x b x b x b x b x b x b x x b x x b x x b x x b x x b x x

dt

dx
c

dt

             

             


2 2 2 2

1 2 2 3 3 4 4 5 1 6 2 7 3 8 4 9 1 2 10 1 3 11 1 4 12 2 3 13 2 4 14 3 4

2 2 2 24

1 1 2 2 3 3 4 4 5 1 6 2 7 3 8 4 9 1 2 10 1 3 11 1 4 12 2 3 13 2 4 14 3 4

x c x c x c x c x c x c x c x c x x c x x c x x c x x c x x c x x

dx
d x d x d x d x d x d x d x d x d x x d x x d x x d x x d x x d x x

dt

            

             

238 

 239 

                                                                  (1) 240 

Based on the parameter optimization search method of GA in Appendix A, the 241 

time coefficient series of
1T , 

2T , SOI and EAWMI from January 1951 to April 2008 242 
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are chosen as the expected data to optimize and retrieve model parameters. In order to 243 

eliminate the dimensionless relationship between variables, data standardization is to 244 

transform data from different orders of magnitude to the same order of magnitude, 245 

thus making the data comparable. So we used min

max min

nor

x x
x

x x





 to normalize the raw 246 

value of each of the four predictors, then we used the normalized value to model and 247 

forecast. Finally, we made forecast results revert back to the raw data magnitude by 248 

max min min( )norx x x x x   . 249 

In order to quantitatively compare the relative contribution of each item of our 250 

model to the evolution of the system, we calculated the relative variance contribution. 251 

The formula is as follows: 
2

14
21

1

1
[ ], 1,2,...,14

n
i

i

j
i

i

T
R i

n
T



 


, Where n is the length of 252 

the data, 1 1 2 2 14 3 4, ,...,iT a x a x a x x  is the item in the equation. According to our 253 

previous research (Hong et al., 2007), the variance contribution of the real item 254 

reflecting the performance of the model has a large proportion, while the variance 255 

contribution of the false term is almost zero, so we delete the weak items of 256 

0.01iR  . 257 

After deleting the weak items, the nonlinear dynamical model of the first time 258 

series
1T , the second time series

2T ,SOI and EAWMI can be reconstructed as follows: 259 

2 21
1 1 2 3 1 3 1 2 1 3 2 4

2 2 22
2 1 2 4 1 2 4 1 3 1 4 3 4

3
3

0.3328 1.2574 0.3511 0.0289 3.1280 0.0125 2.7805 1.5408

1.0307 3.1428 0.3095 4.2301 1.2066 2.5024 0.2891 0.7815 0.4266

2.3

dx
F x x x x x x x x x x x

dt

dx
F x x x x x x x x x x x x

dt

dx
F

dt

         

         

   2 2 2

1 3 4 2 3 4 1 4 2 3 2 4

2 2 24
4 2 4 1 3 4 1 2 1 4 2 4

155 3.2166 1.5284 1.4527 0.0034 4.1206 -0.0025 0.0277 1.2860

0.4478 -0.0268 0.8995 2.3890 0.2037 1.3035 2.0458 2.0015

x x x x x x x x x x x x

dx
F x x x x x x x x x x x

dt

      

       

260 

                                                              (2) 261 
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The model required testing. Because the training period was from January 1951 262 

to April 2008, we chose 
1T , 

2T ,SOI and EAWMI of May 2008, which were not used 263 

as initial forecast data in the modeling. Next, the Runge–Kutta method was used to do 264 

the numerical integration of the above equations, and every step of the integration was 265 

regarded as 1 month’s worth of forecasting results. As a result, forecast results of four 266 

time series over a period of 20 months were obtained. Here, the focus was on the 267 

forecast results of 
1T  and 

2T , as shown in Fig.2.  268 

The pearson correlation coefficient (CC) (Wang et al. 2009b) and the mean 269 

absolute percentage error (MAPE)( Hu et al. 2001) are employed as objective 270 

functions to calibrate the model. The CC evaluates the linear relationship between the 271 

observed and predicting values and MAPE measures the difference between the 272 

observed and predicting values.  273 

From Fig. 2, forecast performance of 
1T  and 

2T  within 5 months was better. 274 

Using 
1T  as an example, the CC between model predictions and corresponding 275 

observations over the first five months forecasts was 0.8966 and MAPE was 8.32%. 276 

However, after 5 months, MAPE increased rapidly, and was 31.29% at 10 months. 277 

The model forecast then significantly diverged from observations, and the forecast 278 

became inaccurate. After 10 months, the forecast results became increasingly worse, 279 

which indicated that the forecast of the model after 5 months was unacceptable. The 280 

forecast results of 
2T were similar to those of 

1T . 281 

The model’s skill should be further assessed by cross-validated retroactive 282 

hindcasts of the time series. As in the above example, omitting a portion of the time 283 
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series (12 months, Jan. 1951 to Dec. 1951) from observations, we trained the model 284 

based on the data from Jan. 1951 to Dec. 2010, and then predicted the omitted 285 

segments (12 months, Jan. 1951 to Dec. 1951). Then in the next prediction 286 

experiment, the omitted segment is Jan.1952 to Dec. 1952 and the training samples 287 

are Jan. 1951 to Dec.1951 and Jan.1953 to Dec.2010. So the forecast time series is 288 

Jan.1952 to Dec. 1952.We then repeated this procedure by moving the omitted 289 

segment along the entirety of the available time series. Each experiment has used the 290 

different training sample and have established the different model equation (but the 291 

method is the same). The similar process of the cross-validated retroactive hindcasts 292 

has also been used in the previous literatures (Hu et al., 2017). 293 

Finally, we obtained cross-validated retroactive hindcast results of 
1T  and 

2T , as 294 

shown in Fig. 3. So the forecast results of 60 cross experiment (each experiment is the 295 

prediction of the 12 month as Fig.2) according to the time sequence can merger into a 296 

new time series (from Jan.1951-Dec.2010), and then the pearson correlation 297 

coefficient (CC) and the mean absolute percentage error (MAPE) can be calculated by 298 

the new prediction time series and the time series of the actual value. Figure 3 is 299 

combined results of the 60 forecast experiments.  300 

As Fig. 2, the forecast performance of 
1T  and 

2T  in Fig. 3 was not satisfactory. 301 

The model forecast significantly diverged from observations, and the forecast became 302 

inaccurate. The CC of
1T  and 

2T between model predictions and corresponding 303 

observations were 0.3411 and 0.4176, respectively. Additionally, the MAPE of
1T  and 304 

2T were 65.42% and 57.56%, respectively. This indicates that the forecast of the model 305 

in the long -term was inaccurate and unacceptable. 306 
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The forecast result may be inaccurate when the integral forecasting time is long. 307 

There will be a significant divergence which will cause an ineffective forecast. To 308 

improve the forecast accuracy, the forecast not only depends on the integral equation 309 

but also on a single initial value. Choosing the different initial value will cause 310 

different forecast accuracy. For example, in a total of 60 cross-validated retroactive 311 

hindcasts examples, the minimum MAPE was 37.65%, while the maximum MAPE 312 

was 89.88%. A forecast, depending on a single initial value, will cause instability of 313 

the forecast results. These two problems are addressed by introducing the 314 

self-memorization principle in the next section. 315 

 316 

4. Introduction of self-memorization dynamics to improve the 317 

reconstructed model 318 

In the above discussion, it was shown that the accuracy of the forecast results of 319 

equation (2) were unsatisfactory. To improve long-term forecasting results, the 320 

principle of self-memorization can be introduced into the mature model (Gu, 1998; 321 

Chen et al., 2009). The principle of self-memorization dynamics (Cao, 1993; Feng et 322 

al., 2001) can be seen in Appendix B. 323 

Based on Eq. (B10) in Appendix B, the improved model can be expressed as 324 

follows:
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where iy  is replaced by the mean of two values at adjoining times; i.e., 326 

1

1
( )

2
i i iy x x  ; F is the dynamic core of the self-memorization equation, which 327 

can be obtained from Eq. (2); and  and    are the memory coefficients, the formula 328 

for which can be found in Appendix B. 329 

If the values of  and    can be obtained, Eq. (3) can be used to obtain the 330 

results of final prediction. The memory coefficients  and    in Eq. (3) were 331 

calibrated using the least-squares method with the same data (January 1951 to April 332 

2008) as those used in Section 3. Eq. (3) can be deconstructed as follows (M is the 333 

length of the time series): 334 
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The matrix equation is:  337 

X Y F                (4) 338 

where [ ]Z Y F , W

 
 


 
  

 . 339 

Eq. (4) can be written as: 340 
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X ZW                       (5) 341 

The memory coefficients vector W  can be calibrated using the least squares 342 

method: 343 

1( )T TW Z Z Z X                    (6) 344 

The memory coefficients ,a  can be obtained from Eq. (6). We then made a 345 

prediction using the self- memorization equation (3), which used the p values before 346 

0t . 347 

The coefficients in F and W were used with the same training data from January 348 

1951to Apr.il 2008. In the forecast examples, we trained both the coefficients in F and 349 

W at the same time, but in the paper we describe them separately to facilitate the 350 

reader for better understanding.  351 

5. Model prediction experiments 352 

5.1 Forecast of time series 1T and 2T  353 

The training sample for the model was from January1951 to April 2008. Here, from 354 

Eq. (3), the forecast results using 1 2,T T , SOI and EAWMI factors can be calculated, called 355 

as step-by-step forecast.  356 

When the retrospective order p is confirmed, step-by-step forecasts can be 357 

carried out. For example, when the 1 2,T T , SOI and EAWMI values of May 2008 were 358 

forecast, iy was obtained from the previous p +1 time of 1 2,T T , the SOI and the 359 

EAWMI data, and 1 2 3 4( , , , )i i i i iF x x x x was obtained from the previous p  times of 360 

1 2,T T , the SOI and the EAWMI data. All four equations were integrated simultaneously. 361 

Taking these in Eq. (3), we can get the 1 2,T T , SOI and EAWMI values of May 2008, 362 
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which these can be taken as the initial values for the next prediction step. Then, the 363 

1 2,T T , SOI and EAWMI values from June 2008 and so on, can be generated. 364 

5.1.1 Determination of p  365 

Based on the self-memorization principle, the self-memorization of the system 366 

determines the retrospective order p (Cao, 1993). If the system forgets slowly, 367 

parameters a  and  will be small and the p value should be high. The SSTA field 368 

forecasts were on a monthly scale, the change of which was slow in contrast to 369 

large-scale atmospheric motion. So parameters a and were small, and generally, 370 

the p  value was in the range 5 to 15.  371 

The retrospective order p was obtained by a trial calculation method. We selected 372 

the p values in the range 4 to 16 to construct the model. The CC and MAPE of 373 

long-term fitting test (from February 1951 to December 2010) are shown in Table 2, 374 

which can be used as the standard to determine the retrospective order p.  375 

Table 2 indicates that when 6p  , the MAPE values of long-term fitting test 376 

were the smallest and the CCs were the largest. Also, when p  from 5 to 9, The CCs 377 

were all more than 0.58 and the forecast results were all good, which is consistent 378 

with our interpretation of the physical mechanisms in section 6.2 below. SOI and 379 

EMWMI were 5-12 months lead relationships with SST (Xu et al., 1993; Chen et al, 380 

2010; Wang et al., 2003). Using a cumulative period of SOI, EMWMI 5-8 months 381 

ahead as initial values can help improve the final forecast results. Our results in table 382 

2 are consistent with the actual physical ENSO process. Therefore, we selected the 383 

retrospective order as p=6. 384 

http://dict.baidu.com/s?wd=in%20contrast


 

19 
 

Then, the prediction experiments can be carried out, based on improved 385 

self-memorization Eq. (3). 386 

The improved self-memorization equation of 
1 2,T T , SOI and EAWMI can then be 387 

established. After the differential equation was discretely dealt with, the memory 388 

coefficients were solved by the least-squares method given in section 4 (Training 389 

period is January 1951 to April 2008). Finally, the improved prediction equation of 390 

1 2,T T , SOI and EAWMI, based on the self-memorization principle, can be expressed 391 

as: 392 
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                (7) 393 

where394 

0.0315 2.113 0.0284 2.1468 0.0688 0.7014 1.3248

0.4088 1.887 1.0233 1.5485 0.9028 1.0255 0.6443
=[ ]
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 396 

The step-by-step forecast was performed. The retrospective order 6p   means 397 

that earlier seven observation data (  1 7p ) should be used during the forecasting 398 

process. The forecast results per month were saved for the next period predictions. 399 
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5.1.2 Long-term step-by-step forecasts of
1T  and 

2T  400 

To test the actual forecast performance of the above improved model, long-term 401 

step-by-step forecasts of 
1T  and 

2T from May 2008 to December 2010 for 20 months 402 

were carried out, as shown in Fig. 4. The forecast results of 
1T  and 

2T  were good. 403 

Within 8 months, the CCs of 
1T  and 

2T  were 0.9163 and 0.9187. MAPEs of 
1T  and 404 

2T  were small, only 5.86% and 6.78%. The forecast time series from 8 months to 14 405 

months gradually diverged, but the trend was acceptable. The CCs of 
1T  and 

2T  406 

reached 0.8375 and 0.8251, and MAPEs of 
1T  and 

2T  were 8.32% and 9.11%. After 407 

14 months, forecast began to diverge and the error started to increase, but the CCs of 408 

1T  and 2T  remained about 0.6899 and 0.6782, and MAPEs reached 18.31% and 409 

19.44%, which can be acceptable.  410 

5.2 Cross-validated retroactive hindcasts of time series 1T and 2T  411 

As in section 3, the model’s skill should be further assessed by cross-validated 412 

retroactive hindcasts of the time series. Because our step-by-step forecasts need the 413 

earlier seven observation data (  1 7p ), we can obtain cross-validated retroactive 414 

hindcast results of 1T  and 2T  from August 1951 to December 2010, as shown in Fig. 415 

5. 416 

From Fig. 5, the forecast performance of 1T  and 2T  was good. The CCs of 417 

1T  and 2T  were 0.7124 and 0.7036, respectively. The MAPEs of 1T  and 2T were 418 

small, only 19.57% and 19.79%, respectively. The peaks and valleys of 1T  and 2T  419 

were also forecasted accurately. The forecast results indicated that the cross-validated 420 

retroactive hindcast results of 1T  and 2T were close to the observed values. 421 
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Compared to Fig. 3, the improved model had better forecast abilities than the original 422 

model. 423 

Many researchers (Zhang et al., 2003b; Smith, 2004) have used Oceanic Niño 424 

Index (ONI) which is used by the U.S. NOAA Climate Prediction Center to determine 425 

the El Niño and La Niña years. It defined that the ONIs of five consecutive months in 426 

winter were all more than 0.5 (less than -0.5) is the ElNiño (La Niña) year. Based on 427 

the above criterion, we can divide the total 60 years (1951-2010) into three categories. 428 

It includes the 18 examples of ElNiño year (such as 1958, 1964, 1966, etc.), 22 429 

examples of LaNiña year (such as 1951, 1955, 1956, etc.) and the remaining 20 430 

experiments of the neutral year. Since the details in Fig.5 is not clear, we list the 431 

forecast results of 60 experiments (including 18 El Niño examples, 22 La Niña 432 

examples and 20 Neutral examples) in table 3. 433 

From table 3, the average of CC of both 1T  and 2T  of 60 experiments within 434 

6 months was more than 0.84 and MAPE was less than 8%. The average of CC within 435 

12 months was more than 0.74 and MAPE was less than 12%. According to the 436 

literature (Barranel et al., 1999), when MAPE was less than 15%, which means the 437 

error was not great and the forecast results were good. Obviously, the forecast results 438 

of ElNiño / LaNiña experiments were a little worse than those of neutral examples, 439 

which means the forecast ability of our model for the abnormal situation was a little 440 

worse than those for the normal situation. But even for ElNiño / LaNiña experiments, 441 

the average of CC was still more than 0.7 and MAPE was less than 15%, which 442 

means the error was not too large and was still within an acceptable range. 443 

5.3Forecast of the SSTA field 444 
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When we obtained the forecast results of the time coefficient series
1T  and 

2T , 445 

we submitted them into the following equation to reconstruct the forecast SSTA field: 446 

2

1

ˆ , 1,2,...,12t n nt

n

x E T t


       (8) 447 

where
nE ，

ntT are the EOF space fields and forecast time coefficients, 448 

respectively, and tjx


 is the forecast SSTA field reconstructed by EOF. 449 

After reconstruction of the space mode (treated as constant) and time coefficient 450 

series (model prediction), the forecast of the SSTA fields was obtained, based on the 451 

forecast results of 
1T  and 

2T in Section 5.2. For economy of space, we cannot draw 452 

all of the forecasted SSTA fields, so we selected a strong El Niño event (December 453 

1997), a strong La Niña event (December 1999) and a neutral event (November 2002) 454 

as examples. 455 

Fig. 6 shows the forecast SSTA field during a strong El Niño event. From the 456 

actual SSTA field in December 1997 (Fig. 6a), an obvious warm tongue structure 457 

occurred in the area of [10°S～5°N，90°W～150°W] in the Eastern Equatorial Pacific, 458 

and a warm anomalous distribution arose in the west Pacific, which indicated a weak 459 

El Niño event. The forecasted SSTA field of December 1997 is shown in Fig. 6b. 460 

Although the range of warm tongue was a litter bigger than the actual situation, the 461 

forecast shape was similar to the actual field and also the contour lines were similar. 462 

The average MAPE between the forecast field and the actual field is 8.56%, which 463 

was controlled within 10%. The forecast results of the improved model event were 464 

quite good for the El Niño event. 465 

Fig.7 shows the forecasted SSTA field of a strong La Niña event. From the actual 466 
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SSTA field in December 1999 (Fig. 7a), an obvious cold pool occurred in the area of 467 

[10°S～10°N，120°W～180°W] in the Equatorial Pacific, which covered the Niño3.4 468 

area. This SSTA field presented a strong strength La Niña event. The forecast SSTA 469 

field from December 1999 is shown as Fig. 7b. Although the strength of the cold pool 470 

was weaker than the actual situation, the forecast shape was similar to that of the 471 

actual field. The average MAPE between the forecast field and the actual field was 472 

9.69%. The errors were larger than that of the El Niño event, but they can be 473 

controlled within 10%, which is acceptable. 474 

Fig. 8 shows the forecasted SSTA field of a neutral event. From the actual SSTA 475 

field in November 2002 (Fig. 8a), a warm pool occurred in the area of [10°S～10°N，476 

120°W～180°W] in the Equatorial Pacific, which covered the Niño3.4 area. However, 477 

the warm pool was small and weak, which represented a neutral event. The forecasted 478 

SSTA field from November 2002 is shown in Fig. 8b. Comparing Figures 6, 7 and 8, 479 

we can see that the forecasted SSTA field of a neutral event was a little worse than 480 

that of the El Niño and La Niña events. The forecasted shape of the SSTA field 481 

basically described the actual situation, but the warm pool in the Niño3.4 area was 482 

stronger and bigger than that of the actual situation, which indicated a borderline El 483 

Niño event. The average MAPE between the forecasted field and the actual field was 484 

14.50%, which was big but can be accepted. 485 

We obtained the average values of MAPE of 18 El Niño events, 22 La Niña 486 

events and 20 neutral events, which were 9.52%, 9.88% and 14.67%, respectively, 487 

representing a good SSTA field forecasting ability of our model. 488 
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5.4 Forecast of ENSO index 489 

The ENSO index can be represented as the sea surface temperature anomaly 490 

(SSTA) in the Niño-3.4 region (5 ° N-5 ° S, 120 ° -170 ° W) and the ENSO index 491 

forecast was the 3-month forecast (Barnston et al. 2012). So we also can pick up the 492 

ENSO index from the above forecasted SSTA field. The forecast results of the ENSO 493 

index within 20 months can also be obtained. The definition of lead time can be seen 494 

in the reference (Barnston et al. 2012). Therefore, similar to the forecast experiment in 495 

section 5.1, a succession of running 3-month mean SST anomalies with respect to the 496 

climatological means for the respective prediction periods, averaged over the Niño 3.4 497 

region, can be obtained, as demonstrated in Fig. 9.  498 

The evaluation criteria of the ENSO index is the temporal correlation (TC), its 499 

definition and specific calculation steps can be seen in these literatures (Kathrin et 500 

al.,2016; Nicosia et al. 2013); The TC is often used to measure the prediction effect of 501 

the ENSO index. For example, Barnston et al.in 2012 also used the TC to compare the 502 

forecast skill of 21 real-time seasonal ENSO models. 503 

The forecast results within lead times of 18 months are shown in Fig. 9, which 504 

demonstrate that the forecast results of the ENSO index are good. Within lead time of 505 

12 months, the TC was 0.8985 and the MAPE value was small, only 8.91%. In 506 

addition, the borderline La Niña event in 2008–2009 was predicted well. After lead 507 

times of 12 months, forecasts began to diverge and the errors started to increase. 508 

Although the TC remained approximately 0.61, MAPE reached 18.58%. Therefore, a 509 

moderate strength El Niño event that occurred in 2009/10 was not predicted. 510 
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We should give more examples to test the ENSO prediction ability of our model. 511 

As in section 5.3, we can divide 60 examples as three types, which are examples of 512 

ElNiño year, LaNiña year and neutral year. Finally, we can obtain the forecast results 513 

of different types of examples in different lead times, as shown in table 4. 514 

From table 4, the average TC of 60 experiments was 0.712 and the average 515 

MAPE was 7.62% within 12 months for all seasons of lead time, which indicates that 516 

the overall ENSO forecast ability of our model was good. The forecast results of the 517 

El Niño examples were significantly worse than those of La Niña examples, while the 518 

forecast results of La Niña examples were significantly worse than those of neutral 519 

examples, which show the model forecast ability of the abnormal state was worse than 520 

the normal state of the ENSO index. Even for the forecast results of El Niño examples, 521 

the average TC was still above 0.6 and the average MAPE can be controlled below 522 

10%, which means the forecast results were still in the acceptable range. Our model 523 

not only accurately predicted the stronger El Niño and La Niña phases but also the 524 

neutral states.  525 

The ENSO forecast often had a spring predictability barrier (Webster, 1999), 526 

which was most prominent during decades of relatively poor predictability 527 

(Balmaseda et al., 1995).To test our model, the skill should be computed over the 528 

entire time series and separately for seasonal subsets of the time series. From the 529 

table4, we can see that although the forecast results of the present model in the spring 530 

were worse than in the autumn, the margin was not high, which means the model can 531 

overcome the “spring predictability barrier,” to some extent. 532 
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5.5 Compared with six mature models  533 

Barnston et al. (2012) compared many ENSO forecast models. Based on his 534 

research, we selected four high quality dynamical models, including ECMWF, JMA, 535 

the National Aeronautics and Space Administration Global Modelling and 536 

Assimilation Office (NASAGMAO) and the National Centre for Environmental 537 

Prediction Climate Forecast System (NCEP CFS; Version1). Two high quality 538 

statistical models also be selected, including the University of California, Los Angeles 539 

Theoretical Climate Dynamics (UCLA-TCD) multilevel regression model and the 540 

NOAA/NCEP/CPC constructed Analogue (CA) model. The detail of the above 541 

models can be seen in these references (Reynolds al., 2002; Luo et al., 2005; Barnston 542 

et al., 2012). 543 

We then compared the forecast ability of the above six models with that of our 544 

model. All of the experiments of our model and six other models were conducted 545 

under the same conditions using the same historical data for modelling and the same 546 

initial values to forecast. In the CPC website, there are detailed explanations of six 547 

models’ training samples and the initial values. So we do not need to install all these 548 

models on their own machines and run them for forecasting. We just made training 549 

samples and initial values of our model were the same with those of selected six 550 

models. At an 8-month lead time, the TC of our model for all seasons combined was 551 

0.613 (Fig. 10). In brief, the forecast ability of the ECMWF model was slightly better 552 

than that of our model but the ability of the other 5 models was worse than that of our 553 

model. While, in regard to the forecast length, the TC within 12 months of our model 554 
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is greater than 0.6, which was superior to the ECMWF model. In addition, the forecast 555 

results of the UCLA-TCD model and the CPC CA model reduced quickly after 556 

5-month lead times, so the forecast ability of our model was more stable than them.  557 

The root mean square error (RMSE) was also examined to assess the 558 

performance of discrimination and calibration. Barnston et al. (2012) believed that all 559 

seasonal RMSE values contributed equally to a seasonally combined RMSE. So we 560 

drew figure 11 to show seasonally combined RMSE.  561 

From Fig. 10 and Fig. 11, we can see the highest correlation tend to have 562 

lower RMSE. So the RMSE of our model was slightly higher than that of ECMWF 563 

model, but it was much lower than those of the other 5 models. Figure 11 and Figure 564 

12 is the average TC and RMSE of the 240 experiments of compared with six mature 565 

models, covers a variety of different types of ENSO and different lead time. So those 566 

samples should be really representative.  567 

6. Conclusions and discussion 568 

6.1 Conclusions  569 

A new forecasting model of the SSTA field was proposed based on a dynamic 570 

system reconstruction idea and the principle of self-memorization. The approach of 571 

the present paper consisted of the following steps:  572 

(1) The SST field can be time (coefficients)-space (structure) deconstructed 573 

using the EOF method. Take 
1T , 

2T , SOI and EAWMI and consider them as 574 

trajectories of a set of four coupled quadratic differential equations based on the 575 

dynamic system reconstruction idea. The parameters of this dynamic model were 576 
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estimated using a GA.  577 

(2) The forecast results of the dynamic model can be improved by the 578 

self-memorization principle. The memory coefficients in the improved 579 

self-memorization model were obtained using the GA method. 580 

(3) The long-term step-by-step forecast results and cross-validated 581 

retroactive hindcast results of time series 
1T and 

2T are all found to be good, with the 582 

CC of approximately 0.80 and the MAPE of less than 15%. 583 

(4) The improved model was used to forecast the SSTA field. The 584 

forecasted SSTA fields of three types of events are accurate. Not only is the forecast 585 

shape similar to the actual field but also the contour lines are similar. 586 

(5) The improved model was also used to forecast the ENSO index. The 587 

average TC of 60 examples within 12 months is 0.712, and the MAPE value is small, 588 

only 7.62%, which proves that the improved model has better forecasting results of 589 

the ENSO index. Although the forecast results of the model in the summer were 590 

worse than in the winter, the margin was not high, which means that the model can 591 

overcome the spring predictability barrier to some extent. Finally, compared with the 592 

six mature models, the new dynamical-statistical forecasting model has a scientific 593 

significance and practical value for the SST in the eastern equatorial Pacific and El 594 

Niño/La Niña event predictions. 595 

6.2 Discussion  596 

L’Heureux et al.(2013) reported that using different data sets and time periods, 597 

the 2nd EOF is not stable, being entirely due to the strong trend. So we need to do 598 
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more experiments to prove that we choose the second mode of EOF to be appropriate, 599 

and whether different time periods will make us forecast unstable or not. Our original 600 

data is the monthly average SST data from January 1951 to Dec. 2010, which are 60 601 

years. We will increase the length of the data for 20 years (Jan.1931 –Dec.2010), for 602 

10 years (Jan.1941- Dec.2010) and decrease the length of the data for 10 years 603 

(Jan.1961- Dec.2010), for 20 years (Jan.1971- Dec.2010). And then we use the same 604 

method to reconstruct a model and forecast the ENSO index as section5.4. The 605 

prediction results are shown in the table5. 606 

From the table, we can see that in the 60 experiments, the prediction results of 607 

the data period increased by 20 years are the best, and the prediction results of the 608 

data period decreased by 20 years is the worst. This is because the more data we use, 609 

the more information it contain. But from the table we can also see the difference 610 

among forecast results of both TC and MAPE of five different sample data are less, 611 

and no abnormal change suddenly worse or better appear. All these indicate that using 612 

different data sets and time periods, even though may have a certain impact on the 613 

pattern of the 2nd EOF, but the impact on our forecast is not great and it will not 614 

make our forecast unstable. 615 

Actually, how many variables and which variables are used in our model 616 

become a key issue to be resolved. We are a complex four factor differential 617 

equations coupling model. We are a complex coupled model of four factor differential 618 

equations, so we are more concerned with the correlation between each other. The 619 

correlation must be considered as an important criterion to select the factors, but in 620 
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order to further verify the correctness of the selection criterion, we have carried out 621 

the prediction experiments (the 60 cross-validated retroactive hindcasts experiments 622 

of the ENSO index for all seasons combined at lead times of 8 months ) of different 623 

variables. 624 

We can see that for all the forecast results of the models of different variables, 625 

the prediction results of 
1 2, ,SOIT T  is the best among those of the three factors and the 626 

prediction result of 
1 2, ,SOI,EAWMIT T  is the best among those of the four factors. But 627 

the prediction result of 
1 2, ,SOI,EAWMIT T  is best among all, which proves that our 628 

selection factors are correct. In our previous study (Hong et al., 2015), the model of 629 

the Western Pacific subtropical high was established by using the correlations as a 630 

criterion to select factors and their forecast results are also good. Now we use the 631 

correlations as a criterion to select factors is also in line with our previous research.  632 

The definition of overfitting: The learned hypothesis may fit the training set 633 

very well, but fail to predict to new examples (fail to fit additional data or predict 634 

future observations reliably). 635 

The potential for overfitting depends not only on the number of parameters and 636 

data but also the conformability of the model structure with the data shape, and the 637 

magnitude of model error compared to the expected level of noise or error in the 638 

data(Burnham and Anderson, 2002). So there are many reasons causing the overfitting 639 

phenomenon. But this does not mean having many parameters relative to the number 640 

of observations inevitably causes the overfitting problem (Golbraikh et al., 2003). 641 

There is no evidence that more parameters will be certain to result in overfitting. 642 
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Based on the definition of overfitting and the previous studies(Golbraikh et al., 2003; 643 

Everitt and Skrondal,2010), we can judge whether a model is overfitting or not by the 644 

accuracy of prediction results of independent samples (Golbraikh and Tropsha, 2002; 645 

Qin and Li, 2006).  646 

In the sample training, our model does not purposely pursue the high degree of 647 

the training samples fitting and improve the effectiveness of the independent 648 

generalization. In fact in our paper the forecast results of the Cross-validated 649 

retroactive hindcasts (section 5.2) and the independent samples validation (table3 and 650 

table4) are both good. Especially, the independent samples validation of the ENSO 651 

index as the table4, we have carried out the 240 independent sample validation 652 

prediction of four seasons of different ENSO events and the coverage of independent 653 

samples test is very wide. Moreover, compared with 6 mature prediction models, the 654 

forecast results of our model are also good, which prove the overfitting problem does 655 

not exist in our model. According to the previous literature (Islam and Sivakumar, 656 

2002; Sivakumar et al.,2001), we can see that prediction principle and structure of the 657 

phase space reconstruction (PSR) of dynamical system is not the same with the 658 

traditional neural network and in the small sample situation the forecasting results of 659 

PSR model are better than those of the traditional neural network (Sivakumar et 660 

al. ,2002), which can be verified in the independent sample test (table3 and table4). So 661 

according to the definition of overfitting, we can say the over fitting phenomenon 662 

does not exist in our model. 663 

Compared with the original model, why the improved model has good forecast 664 
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results and can overcome the spring predictability barrier to some extent are as follow: 665 

Recently, many studies have pointed out that spring is the most unstable season of the 666 

air - sea interaction and the error is likely to develop or grow in the spring, resulting in 667 

the spring predictability barrier (Zhang et al, 2012; Philander et al., 1992). When the 668 

original model uses the indexes in summer as the initial values to predict, the SOI 669 

factor representing the air-sea interaction is most unstable in the spring and the 670 

EMWMI factor does not have much influence on ENSO in summer, so the forecast 671 

results using the indexes in summer as the initial values are certainly much worse than 672 

those using the indexes in the winter as the initial values. That is why our original 673 

model does not overcome the spring predictability barrier.  674 

However, the introduction of the self-memorization dynamics principle can help 675 

our model overcome the spring predictability barrier to some extent. Although the 676 

lead time is still summer (such as JJA), the information of the initial value actually 677 

contains the previous p + 1 month (in this case p = 6, which contains the information 678 

of the previous seven months, including the information of 1 2,T T  , SOI, EMWMI 679 

factor in winter (January, February), spring (March, April, May) and summer (June 680 

and July)). From the dynamical analysis, in this situation, the information and 681 

interaction relationship of four factors have been a long period (from winter to 682 

summer) accumulated, containing much air-sea interaction processes and winter 683 

monsoon continued abnormal information, so the forecast results of our improved 684 

model will be much better than the original model which simply uses only one initial 685 

value. That is why the improved model overcomes the spring predictability barrier to 686 
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some extent. 687 

The forecast results of our model are good, but it still has some problems: 688 

 (1) The inclusion of these terms and the physical processes do these terms in 689 

equation (2) represent are important, especially for the discussion of dynamical 690 

characteristics of the dynamical model. But now we are difficult to give a clear 691 

meaning. Now the main work of our paper is the prediction experiments of the model. 692 

For the reason of time and length, this paper mainly discusses the prediction results of 693 

the model. The physical processes do these terms represent and the discussion of the 694 

dynamical characteristics of the model will be the focus of our next work. Before this, 695 

we have also used the Takens’ delay embedding theorem to reconstruct the dynamical 696 

model of the Western Pacific subtropical high(WPSH). And Based on the 697 

reconstructed dynamical model, dynamical characteristics of WPSH are analyzed and 698 

an aberrance mechanism is developed, in which the external forcings resulting in the 699 

WPSH anomalies are explored, which have been published (Hong et al., 2016). We 700 

also study the bifurcation and catastrophe of the West Pacific subtropical high ridge 701 

index of a nonlinear model (Hong et al., 2017). Based on our previous method and 702 

work, our next work is to analyse the physical processes and the dynamical 703 

characteristics of the SST field. 704 

 (2)The experiments in the present study have proven that the forecasting results 705 

of the improved model are good for large-scale systems, such as ENSO events, and 706 

the forecasting period has been extended. However, for small-scale systems, such as 707 

Hurricanes, whether the forecast results could be improved using the present 708 
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improved model needs to be further verified.  709 

(3) Our paper focuses primarily on these defined indices with 
1 2,T T to 710 

reconstruct a prediction model. Maybe, we can select variables (predictor) based on 711 

EOF analysis and our model may be a more physically oriented model. Maybe we can 712 

learn from Yim et al. (2013; 2015) to draw correlation maps between these fields and 713 

the SSTA field and select the predictors from physical considerations. All these above 714 

questions require that a lot of experiments to be carried out. 715 

These items will be our future work.  716 
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 725 

APPENDIX A: THE PRINCIPLE OF DYNAMICAL MODEL 726 

RECONSTRUCTION 727 

Suppose that the physical law of a nonlinear system going by over time can be 728 

expressed as the following difference form: 729 
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where
if  is the generalized nonlinear function of 

Ni qqqq ,...,,...,, 21
, N  is the number 731 

of variables, and M is the length of observed data. 
1 2( , ,..., ,..., )j t j t j t j t

i i Nf q q q q    can be assumed 732 

to contain two parts: 
jkG representing the expanding items which contain variable 733 

iq ,
i kP just representing the corresponding parameters which are real numbers 734 

( 1,2,...i N , Mj ,...2,1 , 1,2,...,k K ).  735 

It can be supposed as follows: 736 
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GPD   is the matrix form of Eq.(A2) , in which 738 
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Parameters of the above equation can be determined through inverting the 740 

observed data. Vector P which satisfies the above equation can be solved, based on a 741 

given vector D. Assuming q is unknown, it is a nonlinear system. However, assuming 742 

P is unknown, it is a linear system.  743 

With the restriction ( ) ( )TS D GP D GP    as a minimum, GA is introduced as an 744 

optimization solution search in the model parameters space. 745 

Assuming that the parameters matrix P  is the population (solutions), the 746 

( ) ( )TS D GP D GP    is an objective function, 
1

il
S

  is the value of individual 747 

fitness, and 
1

n

i

i

L l


  is the value of total fitness. The operating steps of GA include: 748 

creation and coding of initial population (solutions), fitness calculation, the choice of 749 

male parents, crossover and variation, etc. A detailed theoretical explanation can be 750 
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got  from  Wang (2001). The step length is 1 month during the calculation. After 751 

optimization searches and genetic operations, the target value can be rapidly 752 

converged on and each optimal parameter of the dynamical equations can be obtained. 753 

Through the above approach, we can obtain parameters of a nonlinear 754 

dynamical system, and reconstruct the nonlinear dynamical equations from observed 755 

data. 756 

 757 

APPENDIX B: THE MATHEMATICAL PRINCIPLE OF 758 

SELF-MEMORIZATION DYNAMICS OF SYSTEMS 759 

The dynamical equations of a system can be expressed as: 760 

( , , )i
i

x
F x t

t






1,2,...,i J                               (B1) 761 

where J  is an integer，
ix  is the ith variable of the system state, and   is 762 

the parameter. Equation (B1) represents the relationship between a source function 763 

F  and a local change of x  . Obviously, x  is a scalar function with time t  and 764 

space 0r . A set of time 
0[ ... ... ]p qT t t t  can be considered, where 0t  is an initial 765 

time. A set of space [ ... ... ]a iR r r r  can be considered, where ir  is a spatial point. 766 

An inner product in space 2L :T R  is defined by: 767 

2( , ) ( ) ( ) , ,
b

a
f g f g d f g L                    (B2) 768 

   Accordingly, a norm can be defined as:  769 

1
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a
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For a completion 2L , it can become a Hilbert space H . A generalized one 771 

in H can be regarded as a solution of the multi-time model. By introducing a 772 

memorization function ( , )r t , we can obtain:  773 

0 0
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t t

t t

x
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
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             (B3) 774 

where r  in ( , )r t  can be dropped through fixing on the spatial point 
0r . Suppose 775 

that function ( , )r t  and variable x  etc. are all continuous, differentiable and 776 

integrable, an integration by the left parts of Eq. (B3) can be made as: 777 
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where ( ) ( ) /t t t     . The mean value theorem can be introduced into the third 779 

term in Eq. (B4), the following equation can be obtained: 780 
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where 
0 0( ) ( ),m

m mx t x t t t t    . Substituting Eq. (B4) and Eq. (B5) in Eq. (B3) and 782 

carrying out an algebraic operation, the following equation can be obtained: 783 
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Because the x  value which is at initial time 
0t  and middle time 

mt , only on 785 

the fixed point 
0r  itself , relates to the first term and the second term in Eq. (B6) , 786 

they are be called as a self-memory term. Also, we can call the third term as an 787 

exogenous effect, i.e., which is contributed by other spatial points. 788 

Similarly as Eq. (B4), for multi-time it , 0, 1..., ,i p p t t    , it gives  789 
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After the same term ( ) ( ), 1, 2,...,0i it x t i p p       was eliminated, we 791 

have 792 

0

1( ) ( ) ( ) ( ) [ ( ) ( )] ( ) ( ) ( , ) 0
p

t
m

p p i i i
t

i p

t x t t x t t t x t F x d       


  



       (B7) 793 

As a matter of convenience, we set )(),(),(),( 0000 txxtxxtt tt   ; the 794 

following text uses similar notations. Then, Eq. (B7) can be expressed as: 795 
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Setting 0, 11   p

m

pp xx  , the Eq. (B8) can be written as: 797 
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1S is called as a self-memory term and 2S is called as an exogenous effect term. 799 

For the convenience of calculations, the above self-memorization equation can 800 

be discretized. The differential by difference and the summation can replace the 801 

integration in Eq. (B9), and the mean of two values which are at adjoining times; i.e., 802 

1

1
( )

2

m

i i i ix x x y   can simply replace
m

ix .                      803 

Taking an equal time interval 11   iii ttt and incorporating i  and t , 804 

we can obtain a discretized self-memorization equation as follows: 805 
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where F is the dynamic kernel of the self-memorization equation,
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Based on Eq. (B10), the above technique performed computations and the 809 

forecast can be called as a self-memorization principle. 810 

 811 
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Fig. 1 (a, c) First and second modes of the EOF deconstruction of the SSTA field, and (b, d) the 1070 

corresponding PC time series. 1071 
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Fig.2 Forecast results of the first time coefficient series 
1T  (a) and the second time coefficient series 1076 

2T (b)of the SSTA field by the original model 1077 
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Fig.3The cross-validated retroactive hindcast results of the first time coefficient series 
1T  (a)and the 1093 

second time coefficient series 
2T  (b)of the SSTA field by the original model 1094 
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Fig. 4. Long-term step-by-step forecast results of the first time coefficient series 1T  (a)and the second 1108 

time coefficient series 2T  (b)of the SSTA field by the improved model 1109 
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Fig. 5. The cross-validated retroactive hindcast results of the first time coefficient series 
1T  (a)and the 1115 

second time coefficient series 
2T  (b)of the SSTA field by the improved model 1116 
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Fig.6. The forecast SSTA field(a) and the actual SSTA field (b)of an El Niño event (Dec.1997) 1126 

 1127 

 1128 

 1129 

 1130 

 1131 

 1132 

 1133 

 1134 



 

58 
 

 1135 

 1136 

 1137 

Fig.7. The forecast SSTA field(a) and the actual SSTA field (b)of a La Niña event (Dec.1999) 1138 
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Fig.8. The forecast SSTA field(a) and the actual SSTA field (b)of neutral event (Nov.2002) 1149 

 1150 



 

60 
 

 1151 

Fig.9. The improved dynamical-statistical model prediction of the ENSO index  1152 
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 1160 

Fig. 10. Temporal correlation between model forecasts and observations for all seasons combined, as a 1161 

function of lead time. Each line highlights one model. 1162 
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 1177 

 1178 

Fig . 11. RMSE in standardized units, as a function of lead time for all seasons combined. Each line 1179 

highlights one model.  1180 

 1181 

 1182 

 1183 

 1184 

 1185 

 1186 

 1187 

 1188 

 1189 

 1190 

 1191 

 1192 

 1193 

 1194 



 

63 
 

Table: 1195 

Table 1. The correlation analysis between the front two time series
1 2,T T  and nine impact factors 1196 

factors 1u
 2u

 
PNA DMI SOI PDOI EAWMI OLR SSH 

1T
 0.3161 0.5684 0.4386 -0.3457 0.7734 0.4081 0.6284 0.3287 0.3363 

2T
 0.2118 0.4181 0.2560 -0.2345 0.5232 0.3065 0.4825 0.1816 0.2169 
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Table2.The CC and MAPE of long-term fitting test when the retrospective order p  is different  1230 

p  4 5 6 7 8 9 10 

The 

forecast 

results of 

long-term 

fitting test 

CC 0.75 0.73 0.81 0.74 0.70 0.72 0.68 

MAPE 18.42% 19.36% 14.56% 20.39% 25.31% 24.18% 27.33% 

p  11 12 13 14 15 16  

The 

forecast 

results of 

long-term 

fitting test 

CC 0.68 0.70 0.65 0.62 0.60 0.62  

MAPE 28.10% 26.58% 30.91% 33.14% 34.97% 33.56%  
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Table3. The forecast results of 1T and 2T in different examples within 6 and 12 months 1246 

 1247 

 1248 

 1249 

 1250 

 1251 

 1252 

 1253 

 1254 

 1255 

 1256 

Forecast events 

The results within 

6-months 

The results within 

12-months 

CC MAPE CC MAPE 

The average of 18 El Niño examples of 1T   0.824 8.45% 0.719 12.67% 

The average of 22 La Niña examples of 1T  0.846 7.68% 0.740 11.28% 

The average of 20 Neutral examples of 1T  0.885 6.23% 0.789 9.85% 

The average of total 60 examples of 1T  0.850 7.41% 0.748 10.95% 

The average of 18 El Niño examples of 2T   0.811 8.79% 0.703 13.28% 

The average of 22 La Niña examples of 2T  0.833 7.35% 0.731 11.96% 

The average of 20 Neutral examples of 2T  0.896 6.68% 0.795 10.08% 

The average of total 60 examples of 2T  0.842 7.64% 0.740 11.71% 
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 1257 

Table. 4. The TC and the MAPE between model forecasts and observations within 12 months for 1258 

Nov.–Jan., Dec.–Feb., and Jan.–Mar. as lead time of winter, for Feb.–Apr. , Mar.–May and Apr.–June as 1259 

lead time of spring, for May-July, June-August and July-Sep. as lead time of summer and for 1260 

August-Oct., Sep.-Nov. and Oct.-Dec. as lead time of autumn.  1261 

Forecast 

events 

Lead time of 

all seasons 

combined 

Lead time of 

summer 

(MJJ-JJA-JAS) 

Lead time of 

autumn 

(ASO-SON-ON

D) 

Lead time of 

winter 

(NDJ-DJF-JF

M) 

Lead time of 

spring 

(FMA-MAM-AM

J) 

 TC 
MAP

E 
TC MAPE TC MAPE TC MAPE TC MAPE 

The average of 

18 El Niño 

examples 

0.60

4 
9.70% 

0.56

9 

10.33

% 
0.632 8.85% 

0.67

7 
8.02% 0.538 11.6% 

The average of 

22 La Niña 

examples 

0.62

5 
8.97% 

0.58

1 
9.82% 0.645 8.41% 

0.69

5 
7.83% 0.579 9.82% 

The average of 

20 Neutral 

examples 

0.79

8 
5.96% 

0.75

2 
6.86% 0.831 5.31% 

0.84

4 
4.60% 0.765 7.07% 

The average of 

total 60 

examples 

0.71

2 
7.62% 

0.63

3 
8.51% 0.786 6.88% 

0.77

6 
6.52% 0.653 8.03% 
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 1263 

 1264 

 1265 

 1266 

 1267 

 1268 

 1269 
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 1270 

 1271 

Table5. The forecast results of the different data periods 1272 

Forecast 

events 

The data 

periods（Jan. 

1951-Dec.201

0）Lead time 

of all seasons 

combined 

The data 

periods（Jan. 

1931- 

Dec.2010）

Lead time of 

all seasons 

combined 

The data periods

（Jan. 1941- 

Dec.2010）Lead 

time of all 

seasons 

combined 

The data 

periods（Jan. 

1961- 

Dec.2010）

Lead time of 

all seasons 

combined 

The data periods

（Jan. 1971- 

Dec.2010）Lead 

time of all 

seasons combined 

 TC 
MAP

E 
TC MAPE TC MAPE TC MAPE TC MAPE 

The average of 

18 El Niño 

examples 

0.60

4 
9.70% 

0.68

3 
9.02% 0.642 9.35% 

0.57

2 

10.15

% 
0.551 10.44% 

The average of 

22 La Niña 

examples 

0.62

5 
8.97% 

0.70

1 
8.33% 0.675 8.55% 

0.58

9 
9.42% 0.567 9.82% 

The average of 

20 Neutral 

examples 

0.79

8 
5.96% 

0.84

5 
5.12% 0.821 5.56% 

0.74

6 
6.21% 0.721 6.58% 

The average of 

total 60 

examples 

0.71

2 
7.62% 

0.77

1 
7.14% 0.740 7.38% 

0.68

0 
7.96% 0.652 8.15% 
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 1275 


