Journal cover Journal topic
Ocean Science An interactive open-access journal of the European Geosciences Union
https://doi.org/10.5194/os-2017-60
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 4.0 License.
Research article
04 Aug 2017
Review status
This discussion paper is a preprint. It is a manuscript under review for the journal Ocean Science (OS).
Storm-induced water dynamics and thermohaline structure at the tidewater Flade Isblink Glacier outlet to the Wandel Sea (NE Greenland)
Sergei Kirillov1, Igor Dmitrenko1, Søren Rysgaard1,2, David Babb1, Leif Toudal Pedersen3, Jens Ehn1, Jørgen Bendtsen2,4, and David Barber1 1Centre for Earth Observation Science, University of Manitoba, Winnipeg, Canada
2Arctic Research Centre, Aarhus University, Aarhus, Denmark
3Danish Meteorological Institute, Copenhagen, Denmark
4ClimateLab, Copenhagen, Denmark
Abstract. In April 2015, an ice-tethered conductivity-temperature-depth (CTD) profiler and a down-looking Acoustic Doppler Current Profiler (ADCP) were deployed from the landfast ice near the tidewater glacier terminus of the Flade Isblink Glacier in the Wandel Sea, NE Greenland. The three week timeseries showed that water dynamics and the thermohaline structure were modified considerably during a storm event on 22–24 April when northerly winds exceeded 15 m/s. The storm initiated downwelling-like water dynamics characterized by on-shore water transport in the surface (0–40 m) layer and compensating off-shore flow at intermediate depths. After the storm, currents reversed in both layers, and the relaxation phase of downwelling lasted ~4 days. Although current velocities did not exceed 5 cm/s, the enhanced circulation during the storm caused cold turbid intrusions at 75–95 m depth that are likely attributed to sub-glacial water from the Flade Isblink Ice Cap. It was also found that the semidiurnal periodicities in the temperature and salinity time series were associated with the lunar semidiurnal tidal flow. The vertical structure of tidal currents corresponded to the first baroclinic mode of the internal tide with a velocity minimum at ~40 m. The tidal ellipses rotate in opposite directions above and below this depth and cause a divergence of tidal flow which was observed to induce semidiurnal internal waves of about 3 m height at the front of the glacier terminus.

Our findings provide evidence that shelf-basin interaction and tidal forcing can potentialy modify coastal Wandel Sea waters even though they are isolated from the atmosphere by landfast sea ice almost year round. The northerly storms over the continental slope cause an enhanced circulation facilitating a release of cold and turbid sub-glacial water to the shelf. The tidal flow may contribute to the removal of such water from the glacial terminus.


Citation: Kirillov, S., Dmitrenko, I., Rysgaard, S., Babb, D., Pedersen, L. T., Ehn, J., Bendtsen, J., and Barber, D.: Storm-induced water dynamics and thermohaline structure at the tidewater Flade Isblink Glacier outlet to the Wandel Sea (NE Greenland), Ocean Sci. Discuss., https://doi.org/10.5194/os-2017-60, in review, 2017.
Sergei Kirillov et al.
Sergei Kirillov et al.
Sergei Kirillov et al.

Viewed

Total article views: 160 (including HTML, PDF, and XML)

HTML PDF XML Total BibTeX EndNote
128 30 2 160 2 2

Views and downloads (calculated since 04 Aug 2017)

Cumulative views and downloads (calculated since 04 Aug 2017)

Viewed (geographical distribution)

Total article views: 160 (including HTML, PDF, and XML)

Thereof 160 with geography defined and 0 with unknown origin.

Country # Views %
  • 1

Saved

Discussed

Latest update: 22 Sep 2017
Publications Copernicus
Download
Short summary
This paper reports the analysis of 3-week oceanographic data obtained in the front of Flade Isblink Glacier in North-East Greenland. The major focus of research is considering the changes of water dynamics and the altering of temperature and salinity vertical distribution occurring during the storm event. We discuss the mechanisms that are responsible for the formation of two-layer circulation cell and release of cold and relatively fresh sub-glacial waters into the ocean.
This paper reports the analysis of 3-week oceanographic data obtained in the front of Flade...
Share