Journal cover Journal topic
Ocean Science An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 2.289 IF 2.289
  • IF 5-year value: 2.756 IF 5-year 2.756
  • CiteScore value: 2.76 CiteScore 2.76
  • SNIP value: 1.050 SNIP 1.050
  • SJR value: 1.554 SJR 1.554
  • IPP value: 2.65 IPP 2.65
  • h5-index value: 30 h5-index 30
  • Scimago H index value: 41 Scimago H index 41
Discussion papers
https://doi.org/10.5194/os-2017-58
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/os-2017-58
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 4.0 License.

Research article 28 Jul 2017

Research article | 28 Jul 2017

Review status
This discussion paper is a preprint. A revision of the manuscript for further review has not been submitted.

Quantifying thermohaline circulations: seawater isotopic compositions and salinity as proxies of the ratio between advection time and evaporation time

Hadar Berman, Nathan Paldor, and Boaz Lazar Hadar Berman et al.
  • The Fredy and Nadine Herrmann Institute of Earth Sciences, The Hebrew University of Jerusalem

Abstract. Uncertainties in quantitative estimates of the thermohaline circulation in any particular basin are ‎large, partly due to large uncertainties in quantifying excess evaporation over precipitation and ‎surface velocities. A single nondimensional parameter, ‎γqhxu is proposed to characterize the ‎‎strength of the thermohaline circulation by combining the physical parameters of surface ‎velocity (u), evaporation rate (q), mixed layer depth (h) and trajectory length (x). Values of γ can ‎be estimated directly from cross-sections of salinity or seawater isotopic composition (δ18O and δD). Estimates of ‎γ in the Red Sea and the South-West Indian Ocean are 0.1 and 0.02, ‎respectively, which implies that the thermohaline contribution to the circulation in the former is ‎higher than in the latter. Once the value of ‎γ has been determined in a particular basin, either q ‎or u can be estimated from known values of the remaining parameters. In the studied basins ‎such estimates are consistent with previous studies. ‎

Hadar Berman et al.
Interactive discussion
Status: closed (peer review stopped)
Status: closed (peer review stopped)
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement
Interactive discussion
Status: closed (peer review stopped)
Status: closed (peer review stopped)
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement
Hadar Berman et al.
Hadar Berman et al.
Viewed  
Total article views: 467 (including HTML, PDF, and XML)
HTML PDF XML Total BibTeX EndNote
328 107 32 467 13 20
  • HTML: 328
  • PDF: 107
  • XML: 32
  • Total: 467
  • BibTeX: 13
  • EndNote: 20
Views and downloads (calculated since 28 Jul 2017)
Cumulative views and downloads (calculated since 28 Jul 2017)
Viewed (geographical distribution)  
Total article views: 453 (including HTML, PDF, and XML) Thereof 450 with geography defined and 3 with unknown origin.
Country # Views %
  • 1
1
 
 
 
 
Cited  
Saved  
No saved metrics found.
Discussed  
No discussed metrics found.
Latest update: 18 Jan 2019
Publications Copernicus
Download
Short summary
The paper develops a new non-dimensional parameter that quantifies the degree to which the surface flow in a given area is thermohaline. The proposed parameter can be easily estimated from cross sections of either salinity or isotopes of oxygen or hydrogen. The parameter was estimated from publicly available data in two areas and in both it has yielded estimates of the rates of evaporation that are consistent with previous detailed observational studies.
The paper develops a new non-dimensional parameter that quantifies the degree to which the...
Citation
Share