Figure S1. Example of a CTD station without a well-defined mixed layer (blue category). a CTD profiles of temperature (blue) and salinity (red). b Reflection coefficient profile derived from CTD data (see methods section for details).
Figure S2. Example of a CTD station where the ΔT threshold method fails (outlier marked as red cross in Fig 3). a CTD profiles of temperature (blue) and salinity (red). b reflection coefficient profile derived from CTD data (see methods section for details). Blue horizontal line show MLD\textsubscript{CTD} derived from the ΔT threshold method.

Figure S3. a MLD\textsubscript{CTD} (blue dots) and MLD\textsubscript{EK80} (black dots), mean values (solid lines) and plus/minus one standard deviation (dashed lines) for the AO2016 stations without ΔT modification. b difference between MLD\textsubscript{EK80} and MLD\textsubscript{CTD}. c example of a CTD profile with temperature (blue) and salinity (red). d reflection coefficient profile derived from CTD data. Dark blue horizontal line show MLD\textsubscript{CTD} derived from the modified ΔT threshold and light blue from the non-modified ΔT threshold. Note that the rmsd between MLD\textsubscript{EK80} and MLD\textsubscript{CTD} using the non-modified ΔT is 58 m (compared to 3 when using the modified ΔT).
Figure S4. MLD detection failure due to loss of acoustic data close to the transducer.

a, EK80 echogram.
b, CTD profiles showing temperature (blue) and salinity (red).
c, reflection coefficients derived from CTD data.
d, heave (black), speed over ground (blue).

Figure S5. MLD detection failure due to noise from unknown source.

a, EK80 echogram.
b, CTD profiles showing temperature (blue) and salinity (red).
c, reflection coefficients derived from CTD data.
d, heave (black), speed over ground (blue).