Coastal ocean acidification and increasing total alkalinity in the NW Mediterranean Sea

Lydia Kapsenberg¹, Samir Alliouane¹, Frédéric Gazeau¹, Laure Mousseau¹, and Jean-Pierre Gattuso¹,²,§

¹Sorbonne Universités, Université Pierre et Marie Curie-Paris 6, CNRS-INSU, Laboratoire d'Océanographie de Villefranche, 06230, Villefranche-sur-Mer, France
²Institute for Sustainable Development and International Relations, Sciences Po, 27 rue Saint Guillaume, F-75007 Paris, France

§Corresponding author
E-mail: gattuso@obs-vlfr.fr
Phone: +33 4 93 76 38 59
Abstract. Coastal time-series of ocean carbonate chemistry are critical for understanding how global anthropogenic change manifests in near-shore ecosystems. Yet, they are few and have low temporal resolution. At the time-series station Point B in the NW Mediterranean Sea, seawater was sampled weekly from 2007 through 2015, at 1 and 50 m, and analyzed for total dissolved inorganic carbon (C_T) and total alkalinity (A_T). Parameters of the carbonate system such as pH (pH$_T$, total hydrogen ion scale) were calculated and a deconvolution analysis was performed to identify drivers of change. The rate of surface ocean acidification was -0.0028 ± 0.0003 units pH yr$^{-1}$. This rate is larger than previously identified open-ocean trends due rapid warming that occurred over the study period (0.072 ± 0.022 °C yr$^{-1}$). The total pH$_T$ change over the study period was of similar magnitude as the diel pH$_T$ variability at this site. The acidification trend can be attributed to atmospheric carbon dioxide (CO$_2$) forcing (59 %, 2.08 ± 0.01 ppm CO$_2$ yr$^{-1}$) and warming (41 %). Similar trends were observed at 50 m but rates were generally slower. At 1 m depth, the increase in atmospheric CO$_2$ accounted for approximately 40 % of the observed increase in C_T (2.97 ± 0.20 µmol kg$^{-1}$ yr$^{-1}$). The remaining increase in C_T may have been driven by the same unidentified process that caused an increase in A_T (2.08 ± 0.19 µmol kg$^{-1}$ yr$^{-1}$). Based on the analysis of monthly trends, synchronous increases in C_T and A_T were fastest in the spring-summer transition. The driving process of the interannual increase in A_T has a seasonal and shallow component, which may indicate riverine or groundwater influence. This study exemplifies the importance of understanding changes in coastal carbonate chemistry through the lens of biogeochemical cycling at the land-sea interface. This is the first coastal acidification time-series providing multiyear data at high temporal resolution. The data confirm rapid warming in the Mediterranean Sea and demonstrate coastal acidification with a synchronous increase in total alkalinity.
Keywords – ocean change, ocean acidification, time-series, pH, alkalinity, dissolved inorganic carbon, pCO$_2$, Mediterranean Sea
1. Introduction

Maintaining time-series of oceanographic data is essential for understanding anthropogenic changes in the ocean (Tanhua et al., 2013). On land, fossil fuel burning, cement production, and land use changes have contributed ~600 Gt carbon to the atmosphere during the period 1750-2015 (Le Quéré et al., 2016). In the recent decade 2006-2015, an estimated 25 % of this anthropogenic carbon has been absorbed by the ocean in the form of carbon dioxide (CO$_2$; Le Quéré et al., 2016), and is causing global changes to the ocean carbonate system. Absorption of CO$_2$ by seawater produces carbonic acid, which decreases seawater pH, and is of great concern for biological processes and marine ecosystems (Doney et al., 2009; Gattuso and Hansson, 2011; Pörtner et al., 2014). Since the preindustrial era, global mean ocean pH has declined by 0.1 (Rhein et al., 2013). Due to the declining trend of ocean pH with increasing anthropogenic CO$_2$, the process is termed ‘ocean acidification’. This expression represents a suite of chemical changes, including increases in total dissolved inorganic carbon (C$_T$) and partial pressure of CO$_2$ (pCO$_2$) and decrease in calcium carbonate saturation states (Ω, aragonite and calcite; Dickson, 2010). Rates of ocean acidification differ by ocean region and range from -0.0026 (Irminger Sea, North Atlantic) to -0.0013 (South Pacific) units pH yr$^{-1}$ (Bates et al., 2014). Such time-series remain spatially limited, especially in coastal regions, which provide valuable ecosystem services (Barbier et al., 2011; Costanza et al., 1997) and are under high anthropogenic impact (Halpern et al., 2008). Here, we present the first coastal ocean acidification time-series at high temporal resolution.

Compared to the global ocean, marginal seas serve a critical role in anthropogenic CO$_2$ storage via enhanced CO$_2$ uptake and export to the ocean interior (Lee et al., 2011). As a marginal sea, the Mediterranean Sea has a naturally high capacity to absorb but also buffer anthropogenic CO$_2$ (Álvarez et al., 2014; Palmiéri et al., 2015). This is primarily due to the high total alkalinity (A_T) of Mediterranean waters and overturning circulation (Lee et al.,
In the Mediterranean Sea, the salinity-A_T relationship is driven by the addition of river discharge and Black Sea input, which are generally high in A_T (Copin-Montégut, 1993; Schneider et al., 2007). Combined with evaporation, this results in higher A_T and salinity in the Mediterranean Sea compared to the Atlantic Mediterranean source water (Jiang et al., 2014). On average, Mediterranean Sea A_T is 10% higher than in the global ocean (Palmieri et al., 2015). The surface ocean acidification rate, estimated at ΔpH_T (total hydrogen ion scale) of -0.08 since 1800, is comparable to that of the global ocean despite a 10% greater anthropogenic carbon inventory (Palmieri et al., 2015). Due to its important role in carbon sequestration and ecological sensitivity to anthropogenic change with economic consequences (Lacoue-Labarthe et al., 2016), the Mediterranean Sea could provide insight to global trends (Lejeusne et al., 2010).

Over the last few years, numerous studies have estimated ocean acidification rates across the Mediterranean Sea (Table 1). Together, these studies cover various periods with a range of techniques yielding different results. For example, estimates of change in pH of bottom waters since the preindustrial era range between -0.005 to -0.06 (Palmieri et al., 2015) and as much as -0.14 for full profile estimates (Touratier and Goyet, 2011). Techniques for estimating ocean acidification in the Mediterranean Sea thus far include: (1) hind-casting, using high-resolution regional circulation models (Palmieri et al., 2015), the TrOCA approach as applied to cruise-based profile data (Krasakopoulou et al., 2011; Touratier and Goyet, 2011; Touratier et al., 2016) and others (Howes et al., 2015), (2) partially reconstructed time-series (Marcellin Yao et al., 2016), (3) comparative study periods (Luchetta et al., 2010; Meier et al., 2014), and (4) sensor-based observations over a short study period (Flecha et al., 2015). Ocean acidification time-series of consistent sampling over many years are lacking for the Mediterranean Sea (The MerMex Group et al., 2011),
particularly along the coast where river discharge influences the carbonate system (Ingrosso et al., 2016).

Compared to the open ocean, shallow coastal sites exhibit natural variability in carbonate chemistry over annual timeframes (Hofmann et al., 2011; Kapsenberg and Hofmann, 2016; Kapsenberg et al., 2015), complicating the detection and relevance of open ocean acidification in isolation of other processes (Duarte et al., 2013). In the NW Pacific coast, rapid acidification of surface waters (ΔpH_T -0.058 units yr^{-1}) at Tatoosh Island was documented in the absence of changes in known drivers of local pH variability (e.g., upwelling, eutrophication, and more; Wootton and Pfister, 2012; Wootton et al., 2008).

Further inshore, in the Hood Canal sub-basin of the Puget Sound, only 24-49 % of the estimated pH decline from pre-industrial values could be attributed to anthropogenic CO_2 (Feely et al., 2010). The excess decrease in pH was attributed to increased remineralization (Feely et al., 2010). Acidification rates documented along the North Sea Dutch coastline and inlets were highly variable in space, with some exceeding the expected anthropogenic CO_2 rate by an order of magnitude while others exhibited an increase in pH (Provoost et al., 2010).

Variability in coastal carbonate chemistry stems from both physical (e.g., upwelling, river discharge; Feely et al., 2008; Vargas et al., 2016) and biological processes (e.g., primary production, respiration, net calcification). Within watersheds, coastal carbonate chemistry is affected by eutrophication (Borges and Gypens, 2010; Cai et al., 2011), groundwater supply (Cai et al., 2003), and land use and rain influence on river alkalinity (Raymond and Cole, 2003; Stets et al., 2014). Over longer periods, pH can also be influenced by atmospheric deposition (Omstedt et al., 2015). Through primary production and respiration, coastal ecosystems produce pH fluctuations over hours (e.g., seagrass, kelp) to months (e.g., phytoplankton blooms; Kapsenberg and Hofmann, 2016). Due to existing pH variability in
coastal seas, it is necessary to quantify high-frequency trends in order to interpret the pH changes inferred from lower-frequency sampling.

In this study, we present the first complete time-series data quantifying the present-day ocean acidification rate for a coastal site in the Mediterranean Sea, based on weekly measurements of A_T and C_T sampled from 2007 through 2015. For a subset of this time-series, pH variability was documented using a SeaFET™ Ocean pH Sensor in order to assess hourly pH variability. For comparison and consistency with other ocean acidification time-series around the world, we report rates of change based on anomalies (Bates et al., 2014) and identify drivers of change.

2. Materials and methods

2.1. Site description

A carbonate chemistry time-series was initiated in 2007 and maintained through 2015 in the NW Mediterranean Sea at the entrance of the Bay of Villefranche-sur-Mer, France (Fig. 1): Point B station (43.686° N, 7.316° E, 85 m bottom depth). A second site, Environment Observable Littoral buoy (EOL, 43.682° N, 7.319° E, 80 m bottom depth), was used for pH sensor deployment starting in 2014. These two sites are 435 m apart. Point B has been an oceanographic station since 1957. A full site description and research history has been detailed by De Carlo et al. (2013). Briefly, the Bay is a narrow north-south facing inlet with steep bathymetry and estimated volume of 310 million m3. The surrounding region is predominantly composed of limestone with a series of shallow, submarine groundwater karst springs (Gilli, 1995). The North current, a major and structuring counter-clockwise current in the Ligurian Sea, can sometimes flow close to Point B. The Bay can also be, on occasion, influenced by local countercurrents. Both of these hydrodynamics movements have
signatures of river discharge. Limestone erosion can be observed in the A_T of rivers nearest to Point B (Paillon, due 4 km West; Var due 10 km West; and Roya due 26 km East). River A_T ranges between 1000 to 2000 µmol kg$^{-1}$ (data from *Agence de l'Eau Rhône-Méditerranée-Corse*, http://sierm.eaurmc.fr), and is lower than seawater A_T. The Paillon River, whose plume on occasion reaches into the Bay (L. Mousseau, pers. obs.), was sampled on 18 August 2014 and had a A_T of 1585 ± 0.1 µmol kg$^{-1}$ ($N = 2$, J.-P. Gattuso, unpubl.). Due to low primary productivity, seasonal warming drives the main annual variability in carbonate chemistry at this location (De Carlo et al., 2013).

2.2. Point B data collection, processing, and analysis

To document long-term changes in ocean carbonate chemistry at Point B, seawater was sampled weekly from 9 January 2007 to 22 December 2015. Samples were collected at 1 and 50 m, using a 12-L Niskin bottle at 9:00 local time. Seawater was transferred from the Niskin bottle to 500 mL borosilicate glass bottles and fixed within an hour via addition of saturated mercuric chloride for preservation of carbonate parameters, following recommendations by Dickson et al. (2007). Duplicate samples were collected for each depth. For each sampling event, CTD casts were performed either with a Seabird 25 or Seabird 25+ profiler whose sensors are calibrated at least every two years. Accuracy of conductivity (SBE4 sensor) and temperature (SBE3 sensor) measurements from CTD casts were 0.0003 S m$^{-1}$ and 0.001°C, respectively.

Within six months of collection, bottle samples were analyzed for C_T and A_T via potentiometric titration following methods described by Edmond (1970) and DOE (1994), by *Service National d'Analyse des Paramètres Océaniques du CO$_2$*, at the Université Pierre et Marie Curie in Paris, France. Average accuracy of C_T and A_T measurements was 2.6 and 3 µmol kg$^{-1}$, respectively, as compared with seawater certified reference material (CRM).
provided by A. Dickson (Scripps Institution of Oceanography). Repeatability of replicate samples was better than 3 μmol kg⁻¹. Only obvious outliers were omitted from the analyses: three C_T values at 1 m (> 2300 μmol kg⁻¹), one A_T value at 1 m (> 2900 μmol kg⁻¹), and one A_T value at 50 m (< 2500 μmol kg⁻¹). The C_T and A_T measurements on replicate bottle samples were averaged for analyses.

Calculations of the carbonate system parameters were performed using the R package `seacarb` version 3.1 with C_T, A_T, *in situ* temperature, and salinity as inputs (Gattuso et al., 2016). Total concentrations of silicate (SiOH_4) and phosphate (PO_4^{3-}) were used when available from Point B (L. Mousseau, unpubl., http://somlit.epoc.u-bordeaux1.fr/fr/).

Detection limits for nutrients were 0.03 μM for SiOH_4 and 0.003 to 0.02 μM for PO_4^{3-}; relative precision of these analyses is 5-10% (Aminot and Kérouel, 2007). Total boron concentration was calculated from salinity using the global ratio determined by Lee et al. (2010). The following constants were used: K_1 and K_2 from Lueker et al. (2000), K_f from Perez and Fraga (1987), and K_s from Dickson (1990). Reported measured parameters are temperature, salinity, A_T, and C_T, and derived parameters are pH$_T$ (total hydrogen ion scale), pH$_T$ normalized to 25 ºC (pH$_{T25}$), pCO$_2$, and aragonite (Ω_a) and calcite (Ω_c) saturation states. Salinity-normalized changes in A_T (nA_T) and C_T (nC_T) were calculated by dividing by *in situ* salinity and multiplying by 38. Except for pH$_{T25}$, all parameters are reported at *in situ* temperatures.

The average uncertainties of the derived carbonate parameters were calculated according to the Gaussian method (Dickson and Riley, 1978) implemented in the “errors” function of the R package seacarb 3.1 (Gattuso et al., 2016). The uncertainties are ± 2.7 x 10⁻¹⁰ mol H⁺ (about 0.015 units pH$_T$), ± 15 μatm pCO$_2$, and ± 0.1 unit of the aragonite and calcite saturation states.
To quantify interannual changes in carbonate parameters, the data were detrended for seasonality by subtracting the respective climatological monthly means computed for the period 2009-2015 from the time-series (‘monthly means’ from hereon). The resulting residuals were analyzed using a linear regression to compute anomaly trends. This approach follows methods from Bates et al. (2014) to allow for comparisons of trends observed at different time-series stations. All analyses were performed in R (R Core Team, 2016).

2.3. Deconvolution of pH$_T$ and pCO$_2$

To identify proportional contributions of various drivers to ocean acidification trends at Point B, deconvolution of time-series pH$_T$ and pCO$_2$ was performed following methods from García-Ibáñez et al. (2016) for observations at 1 and 50 m. The equation is described below for pH$_T$, where changes in pH$_T$ are driven by changes in temperature (T), salinity (S), A_T, and C_T, over time (t):

$$
\frac{dpH_T}{dt} = \frac{dpH_T}{dT} \frac{dT}{dt} + \frac{dpH_T}{dS} \frac{dS}{dt} + \frac{dpH_T}{dA_T} \frac{dA_T}{dt} + \frac{dpH_T}{dC_T} \frac{dC_T}{dt}
$$

(1)

Here, $\frac{dpH_T}{dvar} \frac{dvar}{dt}$ represents the slope contribution of changing var to the estimated change in pH$_T$ ($\frac{dpH_T}{dt}$), where var is either temperature (T), salinity (S), A_T, or C_T. The sensitivity of pH to var ($\frac{dpH_T}{dvar}$) was estimated by calculating pH$_T$ using the true observations of var and holding the other three variables constant (mean value of the time-series) and regressing it to var. Sensitivity ($\frac{dpH_T}{dvar}$) was then multiplied by the anomaly rate of var (Table 2). The calculation was repeated for pCO$_2$ ($\frac{dpCO_2}{dt}$) in order to compare the rate of increase with that of atmospheric CO$_2$.

As a sub-component of $\frac{dpCO_2}{dC_T} \frac{dC_T}{dt}$, the rate of anthropogenic CO$_2$ increase was estimated from atmospheric CO$_2$ concentrations nearest to Point B (Plateau Rosa, Italy,
courtesy of the World Data Center for Greenhouse Gases, http://ds.data.jma.go.jp/gmd/wdcgg/). For these data, missing daily values were linearly interpolated, climatological monthly means were calculated and subtracted from the time-series to generate an anomaly time-series. A linear regression was performed on anomalies where the slope represents the rate of anthropogenic CO₂ increase in the atmosphere. Finally, to help identify different processes that might have contributed to the observed trends, linear regressions were performed on changes in Aₜ and Cₜ per month (mean value of observations within one month) from 2009 through 2015 and on the salinity-Aₜ relationship by year.

2.4. SeaFET data collection, processing, and analysis

To capture pH variability at higher-than-weekly sampling frequencies, a SeaFET™ Ocean pH sensor (Satlantic) was deployed on the EOL buoy (435 m from the Point B sampling site) starting in June 2014, at 2 m depth. Autonomous sampling was hourly and deployment periods averaged 58 ± 25 days with 5 ± 2 calibration samples per deployment. Field calibration samples for pH were collected using a Niskin bottle next to SeaFET within 15 min of measurement. This sampling scheme was sufficient for this site as there is no large high-frequency pH variability. Unlike Point B sampling, SeaFET calibration samples were processed for pH using the spectrophotometric method (Dickson et al., 2007) with purified m-cresol purple (purchased from the Byrne lab, University of South Florida). In situ temperature, salinity, and Aₜ measured at Point B, within 30 min of the SeaFET sampling, were used to calculate in situ pHₜ of the calibration samples.

SeaFET voltage was converted to pHₜ using the respective calibration samples for each deployment period, following the methods and code described in Bresnahan et al. (2014) but adapted for use in R. Only 5% of the data was removed during quality control, due to biofouling in one deployment and battery exhaustion in another, yielding 610 days of
data. The mean offset between calibration samples and the calibrated SeaFET pH time-series was ± 0.007, indicating a high-quality pH dataset (data shown in Fig. 7c).

The estimated standard uncertainty in SeaFET pH\textsubscript{T} is ± 0.01 and was calculated as the square root of the sum of each error squared. The sources of errors are: measurement error of spectrophotometric pH (± 0.004, \(N = 68\) mean SD of 5 replicate measurements per calibration sample for samples collected between 16 July 2014 and 3 May 2016), spatio-temporal mismatch sampling at EOL (± 0.007, mean offset of pH\textsubscript{T} of the calibration samples from calibrated time-series), and variability in purified m-cresol dye batch accuracy as compared to Tris buffer CRM pH (± 0.006, mean offset of pH\textsubscript{T} of the spectrophotometric measurement of Tris buffer from the CRM value).

3. Results

3.1. Time-series trends

At Point B from January 2007 to December 2015, more than 400 samples were collected for carbonate chemistry at both 1 and 50 m. Anomaly trends detected at 1 m (Fig. 2) were also significant at 50 m (Fig. 3, Table 2), with the exception that salinity only increased at 50 m (0.0063 ± 0.0020 units yr\(^{-1}\)). At 1 m, trends were significant for pH\textsubscript{T} (-0.0028 units yr\(^{-1}\)), \(A\textsubscript{T}\) (2.08 µmol kg\(^{-1}\) yr\(^{-1}\)), \(C\textsubscript{T}\) (2.97 µmol kg\(^{-1}\) yr\(^{-1}\)), pCO\(_2\) (3.53 µatm yr\(^{-1}\)), and \(\Omega\textsubscript{a}\) (-0.0064 units yr\(^{-1}\)). At the same time, temperature anomaly increased (0.072 °C yr\(^{-1}\)). Changes in carbonate chemistry parameters were greater at 1 m compared to 50 m, with the exception of salinity and temperature. The warming rate at 50 m was slightly greater compared to 1 m, mostly due to increasing summer temperatures since 2007.

Strong seasonal cycles of carbonate chemistry parameters were present at Point B at 1 m (Fig. 4). Climatological monthly means (2007-2015) are described briefly and listed in
Table S1. Mean temperature range was 11.2 ºC with a maximum at 24.77 ± 1.35 ºC in August and minimum of 13.58 ± 0.41 ºC in February. The range in A_T was 19 µmol kg$^{-1}$ from June to September. The C_T range was 33 µmol kg$^{-1}$ with a peak in late winter and minimum values in August and October. Due to summer warming coinciding with the period of peak primary productivity (De Carlo et al. 2013), warming countered the influence of low C_T on pH. As a result, pH_T reached minimum values in summer (8.02 ± 0.03, July and August) and peaked in late winter (8.14 ± 0.01, February and March), for an overall annual pH range of 0.12. The corresponding pCO$_2$ range was 128 µatm from February to August. Seasonal cycles were smaller at 50 m compared to 1 m (Table S1).

3.2. Deconvolution of pH$_T$ and pCO$_2$

Deconvolutions of pH and pCO$_2$ are presented in Table 3 and 4, respectively. The estimated anomaly trends ($\frac{dpH_T}{dt}, \frac{dpCO_2}{dt}$) from the deconvolution fall within the error of the observed anomaly trends (Table 2). The contribution of warming to the pH$_T$ anomaly (-0.0011 units yr$^{-1}$, at 1 m) matched the difference between the trends of pH$_T$ and pH$_{T25C}$ (Table 2), which verifies that the deconvolution reproduced influences of temperature sensitivity well. Overall, these results indicate that the deconvolution analyses represent the observed trends well.

At both depths, the predominant driver of $\frac{dpH_T}{dt}$ and $\frac{dpCO_2}{dt}$ was the increase in C_T.

Increasing A_T countered 66-69 and 60 % of the influence of increasing C_T on $\frac{dpH_T}{dt}$ and $\frac{dpCO_2}{dt}$, respectively. At 1 m, warming accounted for 41 and 37 % of $\frac{dpH_T}{dt}$ and $\frac{dpCO_2}{dt}$, respectively. Since warming was slightly greater at 50 m compared to 1 m, warming accounted for a larger proportional influence on $\frac{dpH_T}{dt}$ and $\frac{dpCO_2}{dt}$ at 50 m compared to 1 m. Increasing salinity at 50 m contributed slightly to $\frac{dpH_T}{dt}$ (4 %) and $\frac{dpCO_2}{dt}$ (2 %).
Atmospheric CO₂ anomaly at Plateau Rosa increased by 2.08 ± 0.01 ppm yr⁻¹ ($F_{1,3285} = 4664, P << 0.001, R^2 0.93$) during the study period 2007-2015, and represents the anthropogenic CO₂ forcing on seawater pH. To estimate the influence of anthropogenic CO₂ forcing at Point B, we assume air-sea CO₂ equilibrium (e.g., increase in atmospheric CO₂ causes an equal increase in seawater pCO₂) for the water mass at 1 m. This assumption is based on evidence that Point B is a weak sink for atmospheric CO₂ with near-balanced air-sea CO₂ flux on an annual time-frame (De Carlo et al., 2013). Considering the error associated with deconvolution of pCO₂ at 1 m, atmospheric CO₂ increase can, at most, represent 38-43% of the total C_T contribution ($\frac{dpCO_2}{dcT} \frac{dcT}{dt}$ to $\frac{dpCO_2}{dt}$). This leaves 57-62% of the total C_T contribution to pCO₂ trends unaccounted for.

As A_T is not influenced by addition of anthropogenic CO₂ to seawater, but it did increase, the next question was whether or not the changes in A_T and C_T were process-linked. At 1 m, regressions of annual monthly trends of A_T and C_T revealed similar seasonal cycles for both parameters (Fig. 5, Table S2). The fastest increases in A_T and C_T occurred from May through July. The smallest (non-significant) changes occurred in January. The synchronicity between monthly trends of A_T and C_T was also observed at 50 m, but the rates were slower (analysis not shown).

3.3. Salinity and A_T relationships

Over an annual observation period at 1 m, salinity was a poor predictor of A_T, with the exception of 2007 (Fig. 6). The R^2 value for each annual salinity-A_T relationship at 1 m ranged from 0.00 (in 2013) to 0.87 (in 2007) with y-intercepts (A_{T0}, total alkalinity of the freshwater end-member) ranging between -176 µmol kg⁻¹ (in 2007) and 2586 µmol kg⁻¹ (in 2013). The interannual variability of the salinity-A_T relationship was driven by the variability in A_T observed at salinity < 38.0 that was present from November through July.
Changes in salinity (based on monthly means) at Point B were small and ranged from 37.64 ± 0.26 to 38.21 ± 0.11 from May to September, following freshwater input in winter and spring and evaporation throughout summer and fall (Fig. 4). Highest (> 38.0) and most stable salinity observations were made in August through October and coincided with the period of maximum A_T (2562 and 2561 ± 9 µmol kg$^{-1}$ in September and October, respectively). Minimum A_T (2543 ± 14 µmol kg$^{-1}$) was observed in June, one month after minimum salinity. To capture this seasonality without the inter-annual variation of A_T, the salinity-A_T relationship at 1 m was estimated from climatological monthly means (cA_T and cS, $N=12$) where cA_T units are µmol kg$^{-1}$ and error terms are standard errors ($R^2 = 0.74$):

$$cA_T = 1554.9(±185.9) + 26.3(±4.9) \times cS \quad (2)$$

At 50 m, monthly salinity and A_T were less correlated over an annual cycle (analysis not shown). Salinity remained stable at 38.0 from January through September while A_T declined by 13 µmol kg$^{-1}$. In general, seasonal changes were dampened at 50 m compared to 1 m.

3.4. High-frequency pH data

To verify the weekly sampling scheme at Point B, a continuous record of high-frequency pH observations was obtained via SeaFET deployments from June 2014 to April 2016 (Fig. 7). Sensor data corroborated the seasonal pH and temperature cycle observed at Point B (Fig. 7a-b). Event-scale effects (e.g., pH$_T$ change ≥ 0.1 for days to weeks, *sensu* Kapsenberg and Hofmann 2016) were absent at this site suggesting that weekly sampling was sufficient to describe seasonal and interannual changes in carbonate chemistry at Point B.

The magnitude of diel pH$_T$ variability was small: the 2.5th to 97.5th percentiles ranged between 0.01 and 0.05 units pH$_T$ (Fig. 7d-e). Variability increased from winter to spring with the greatest variations in April, May, and June (ΔpH$_T$ > 0.035). The magnitude of diel pH...
variability was not correlated with temperature or the concentration of chlorophyll-a (data not shown).

4. Discussion

High resolution time-series are necessary to document coastal ocean acidification. Based on weekly measurements from 2007 through 2015, near-surface pH$_T$ decreased by 0.0028 ± 0.0003 units yr$^{-1}$ at Point B in the NW coastal Mediterranean Sea. Temperature increased by 0.072 ± 0.022 °C yr$^{-1}$. In addition, A_T increased by 2.08 ± 0.19 µmol kg$^{-1}$ yr$^{-1}$, a change that is unrelated to direct effects of CO$_2$ absorption by seawater. In less than a decade, the total change in pH at Point B (ΔpH$_T$: 0.0252, Table 1) was of the same magnitude as the diel pH variability (ΔpH$_T$: 0.01-0.05) and $1/5^{th}$ of the magnitude of the seasonal pH cycle (ΔpH$_T$: 0.12) found at this site.

We can identify the drivers of ocean acidification at Point B using the deconvolution of pH and pCO$_2$ trends and by assuming that the increase in A_T was due to increases in its carbon constituents, bicarbonate (HCO$_3^-$) and carbonate (CO$_3^{2-}$) ions. This assumption is based on the fact that (1) HCO$_3^-$ and CO$_3^{2-}$ ions together make up 96% of A_T at Point B, (2) increases in HCO$_3^-$ and CO$_3^{2-}$ would both contribute to A_T and C_T and thereby explain the observed synchronicity of monthly trends in A_T and C_T (Fig. 5). Using the pCO$_2$ deconvolution, we can then sum the contributions to pCO$_2$ from A_T (-3.08 µatm pCO$_2$ yr$^{-1}$) and C_T (5.14 µatm pCO$_2$ yr$^{-1}$) to determine the proportional contribution of ΔC$_T$ to ΔpCO$_2$ that is unrelated to changes in C_T brought on by A_T. This remaining 2.06 µatm pCO$_2$ yr$^{-1}$ increase due to increasing C_T closely matched the magnitude of atmospheric CO$_2$ increase during the observation period (2.08 ± 0.01 ppm yr$^{-1}$ at Plateau Rosa, Italy). The closeness of these numbers does not imply causation. However, given that surface waters at Point B exhibit a near-zero air-sea CO$_2$ flux over annual cycles (De Carlo et al., 2013), the evidence
supports the conclusion that the ocean acidification trend at Point B closely follows the rate of atmospheric CO$_2$ increase. The influence of atmospheric CO$_2$ can also be observed in the monthly changes in C$_T$. Monthly C$_T$ trends are positive and statistically significant over more months than A$_T$ trends (8 vs. 3 months), which are more seasonally restricted (Fig. 5).

Applying this simple model to pH$_T$, assuming changes in C$_T$ are due to both increasing A$_T$ (a neutralizing effect) and atmospheric CO$_2$ forcing, the surface ocean acidification trend at Point B can be attributed primarily to atmospheric CO$_2$ forcing (59%) and secondarily to warming (41%).

Using this same approach for observations at 50 m, the C$_T$ contribution to pCO$_2$ trends that was unrelated to A$_T$ change was 1.41 µatm pCO$_2$ yr$^{-1}$, which is 68% of the rate of atmospheric CO$_2$ increase in contrast to 99% at 1 m. Changes in pH$_T$ can then be attributed to atmospheric CO$_2$ forcing (42%), warming (54%), and increasing salinity (3%). Due to slightly enhanced warming and reduced CO$_2$ penetration observed at 50 m, warming had a greater effect on the ocean acidification trend than atmospheric CO$_2$ forcing at depth compared to the surface.

The acidification rate at Point B (-0.0028 units pH$^{-1}$ yr$^{-1}$) is larger than those reported for other ocean time-series sites (-0.0026 to -0.0013 units pH yr$^{-1}$, Bates et al., 2014), likely due to differences in warming rates. The observed warming from 2007 through 2015 (0.72 to 0.88 ± 0.2 °C decade$^{-1}$) is extremely rapid relative to global trends in the upper 75 m from 1971 to 2010 (0.11 °C decade$^{-1}$, Rhein et al., 2013). The coastal region of Point B has warmed steadily since 1980 and with periods of rapid warming (Parravicini et al., 2015).

Exacerbated warming may be related to the positive phases of the Atlantic Multi-decadal Oscillation (AMO) and North Atlantic Oscillation (NAO), both of which are associated with episodic warming of the Mediterranean Sea (Lejeusne et al., 2010). The AMO has been
positive since the 1990s\(^1\) and positive NAO phases were prevalent during the second half of our study\(^2\).

Nearest to Point B, the acidification rate at DYFAMED, an open-sea site about 50 km offshore from Point B (Fig. 1), was estimated at -0.003 ± 0.001 units pH\(_{SW}\) yr\(^{-1}\) from 1995 to 2011 (Marcellin Yao et al., 2016). At DYFAMED, warming contributed approximately 30 % to the acidification rate and the remaining 70 % was attributed to anthropogenic CO\(_2\) (Marcellin Yao et al., 2016). While the uncertainty for DYFAMED pH data is large, the trends are comparable to those observed at Point B. However, \(A_T\) at the DYFAMED did not change significantly from 2007 through 2014 \((F_{1,51} 3.204, P = 0.0794, R^2 0.08,\) data from Coppola et al., 2016). This probably indicates that the processes driving changes in \(A_T\) at Point B are unique to the coastal environment.

Similar changes in coastal carbonate chemistry were observed elsewhere in the near-shore Mediterranean Sea. In the Northern Adriatic Sea, Luchetta et al. (2010) determined an acidification rate of -0.0025 units pH\(_T\) yr\(^{-1}\) and an increase in \(A_T\) of 2.98 \(\mu\)mol kg\(^{-1}\) yr\(^{-1}\) at depths shallower than 75 m, by comparing cruise data between the winters of 1983 and 2008. Point B and Adriatic Sea observations are independent but reflect changes in seawater chemistry that may be occurring in more coastal regions of the Mediterranean. Additional time-series would help resolve the spatial extent of these observations.

While the trends in atmospheric CO\(_2\) forcing and temperature account for the ocean acidification trend at Point B, the increase in \(A_T\) and \(C_T\) beyond what can be attributed to changes in atmospheric CO\(_2\) was unexpected. The fastest increases in \(A_T\) and \(C_T\) occurred from May through July (Fig. 5), when the thermal stratification settles. In the NW Mediterranean, the main processes governing seasonal variability in \(A_T\) are evaporation

\(^1\) http://www.cgd.ucar.edu/cas/catalog/climind/AMO.html

increasing A_T in summer (i.e., June through September at Point B) and, to a lesser extent,
phytoplankton uptake of nitrate (NO_3^-) and phosphate (PO_4^{3-}) increasing A_T from January
through March (Cossarini et al., 2015). During the transition of these processes, salinity
decreases to a minimum in May, reflecting freshwater input that dilutes A_T to minimum
values at the start of summer. For C_T, peak values occur in winter when the water column is
fully mixed. For reference, at DYFAMED, mixing occurs down to more than 2000 m depth
and C_T is up to 100 μmol kg$^{-1}$ higher in deep waters (Copin-Montégut and Bégovic, 2002).
Notably, monthly trends of C_T at Point B were not statistically significant from November
through January for the period 2007-2015. Following winter, C_T declines due to a
combination of phytoplankton bloom carbon uptake and freshwater dilution (assuming river
$C_T < \text{seawater } C_T$), until the onset of summer stratification. Summer warming leads to pCO$_2$
outgassing (De Carlo et al., 2013), thereby further decreasing C_T. In addition, the increases in
A_T and C_T from 2007 through 2015 were more pronounced at 1 m compared to 50 m. Thus,
the process driving A_T and C_T trends are stronger at the surface and affect carbonate
chemistry primarily during the spring-summer transition from May through July.

Identifying the process causing an increase in A_T and C_T beyond what can be
attributed to changes in atmospheric CO$_2$ requires some speculation. Some biogeochemical
processes can be ruled out as drivers. For example, changes in benthic processes are very
unlikely. Reduced calcium carbonate (CaCO$_3$) precipitation rates would increase A_T but
would increase C_T. Even so, the dominant ecosystem in the Bay of Villefranche-sur-Mer is
seagrass meadows, which harbor relatively few calcifying organisms. Dissolution of calcium
carbonate sediment would contribute to A_T and C_T increase in the water column. However, as
the water was supersaturated with respect to both aragonite and calcite, this could only be
mediated by biological processes. Carbonate dissolution following CO$_2$ production via oxic
degradation of organic matter releases A_T and C_T in a 1:1 ratio (Moulin et al., 1985).
Likewise, anaerobic remineralization produces alkalinity (Cai et al., 2011). In the sediment of the Bay of Villefranche, sulfate reduction coupled with precipitation of sulfide minerals is the dominant anoxic mineralization pathway (Gaillard et al., 1989). An increase in these processes would explain the observed increase in A_T and C_T, but as trends were slower at 50 m compared to 1 m, this would suggest the dominance of a process taking place in surface waters.

In the upper water column at Point B, changes in biological processes are unlikely to explain the observed trends in A_T and C_T. For example, the concentration of chlorophyll-a, a proxy of primary production, has decreased since 1995, nutrients increased, and phytoplankton blooms have shifted towards earlier dates in the year (Irisson et al., 2012).

While a decrease in net primary production could drive C_T trends, the observed increase in NO_3^- and PO_4^{3-} would cause a small decrease in A_T (Wolf-Gladrow et al., 2007). Stimulated community respiration could result from warming waters but enhanced remineralization would cause a decrease in A_T (Wolf-Gladrow et al., 2007).

The lack of salinity change at the surface excludes additional processes as drivers of A_T and C_T increase at Point B. For example, increased summertime evaporation (concentration effect) and reduced freshwater input (decreased dilution effect) would both be expected to cause an increase in salinity, which was not observed. Increased input of Eastern Mediterranean Sea waters could increase A_T, but this is unlikely as this water mass flows much deeper than Point B (Millot and Taupier-Letage, 2005).

Instead, the observed changes in A_T and C_T could be due to increased limestone weathering which would increase the input of A_T from land to the sea via rivers and groundwater. Rivers contribute both A_T and C_T to the Mediterranean Sea (Copin-Montégut, 1993; Tamšé et al., 2015). River A_T originates from erosion and is correlated with bedrock composition (e.g., McGrath et al., 2016). Positive trends in river A_T have been documented in
North America and occur via a number of processes including: (1) the interplay of rainfall and land-use (Raymond and Cole, 2003), (2) anthropogenic limestone addition used to enhance agriculture soil pH (Oh and Raymond, 2006; Stets et al., 2014) and freshwater pH (Clair and Hindar, 2005), and (3) potentially indirect effects of anthropogenic CO$_2$ on groundwater CO$_2$-acidification and weathering (Macpherson et al., 2008). Such, and other, processes were hypothesized to have driven A_T changes in the Baltic Sea (Müller et al., 2016). There, an increase in A_T of 3.4 µmol kg$^{-1}$ yr$^{-1}$ was observed from 1995 to 2014 (mean salinity = 7). In contrast to Point B, the increase in Baltic Sea A_T was not noticeable at salinity > 30 (Müller et al., 2016).

Given the above speculations, the simplest plausible mechanisms causing the unexpected A_T and C_T trends would be through increasing A_T of the freshwater end-member of Point B. Local precipitation, however, did not have an influential effect and was not correlated with salinity or A_T (Fig. S1). While submarine groundwater springs can be a significant source of nutrients, A_T, and C_T to the ocean (Cai et al., 2003; Slomp and Van Cappellen, 2004), carbonate chemistry contributions of local submarine springs are currently unknown (Gilli, 1995). Signatures of limestone erosion can be observed in A_T of nearby rivers (Var, Paillon, and Roya) but detailed time-series are not available. Likewise, riverine influence at Point B has not been quantified. If river runoff exerts a dominant control on Point B carbonate chemistry, there is a lag effect, as freshwater influence peaked in May but A_T and C_T increased fastest from May through July. Consequently, this hypothesis needs further investigation. Until the source of A_T increase is properly identified, use of this observation in modeling should be implemented with caution.

5. Conclusion
Predictions of coastal ocean acidification remain challenging due the complexity of biogeochemical processes occurring at the ocean-land boundary. At the Point B coastal oceanographic station in the NW Mediterranean Sea, surface ocean acidification was due to atmospheric CO₂ forcing and rapid warming over the observation period 2007-2015. However, additional trends in \(A_T \) and \(C_T \) were observed and remain unexplained, but these trends could relate to riverine and groundwater input. The influence of coastal boundary processes influencing seawater \(A_T \) and \(C_T \) presents a potentially major difference between coastal and offshore changes in ocean chemistry. This study highlights the importance of considering other anthropogenic influences in the greater land-sea region that may contribute to coastal biogeochemical cycles (\textit{sensu} Duarte et al. 2013) and alter projections of anthropogenic change in near-shore waters.

Data availability – Time-series data from Point B are available at Pangaea® (doi: 10.1594/PANGAEA.727120)

Author contribution – JPG initiated the study, LM supervised data collection, SA performed SeaFET deployments and calibration, JPG and LK designed and JPG conducted statistical analyses, and LK prepared the manuscript with contributions from all authors.

Competing interests - The authors declare that they have no conflict of interest.

Acknowledgements – Thanks are due to the Service d'Observation Rade de Villefranche (SO-Rade) of the Observatoire Océanologique and the Service d'Observation en Milieu Littoral (SOMLIT/CNRS-INSU) for their kind permission to use the Point B data. Discrete samples were analyzed for \(C_T \) and \(A_T \) by the Service National d'Analyse des Paramètres
Océaniques du CO2. The authors thank Jean-Yves Carval, Anne-Marie Corre, Maïa Durozier, Ornella Passafiume and Frank Petit for sampling assistance, to Steeve Comeau and Alice Webb for help with data analysis, and to Bernard Gentili for producing Fig. 1. Atmospheric CO2 data from Plateau Rosa was collected by Ricerca sul Sistema Energetico (RSE S.p.A.); we are grateful for their contribution. We acknowledge L. Coppola for providing DYFAMED data (Coppola et al., 2016) and Météo-France for supplying the meteorological data and the HyMeX database teams (ESPRI/IPSL and SEDOO/Observatoire Midi-Pyrenees) for their help in accessing them. The Agence de l’Eau Rhône-Méditerranée-Corse kindly provided data on the chemistry of local rivers. Alexandre Dano, Gilles Dandec and Dominique Chassagne provided the high-resolution bathymetric data for the volume estimate of the Bay. We are grateful for helpful comments from Nicolas Metzl on the manuscript and those from two anonymous reviewers. This work is a contribution to the European Project on Ocean Acidification (EPOCA; contract # 211384) and the MedSeA project (contract # 265103), which received funding from the European Community's Seventh Framework Programme, and to the United States National Science Foundation Ocean Sciences Postdoctoral Research Fellowship (OCE-1521597) awarded to LK.

References

Dickson, A. G.: Standard potential of the reaction: \(\text{AgCl}(s) + 1/2 \text{H}_2(\text{g}) = \text{Ag}(s) + \text{HCl(aq)} \)

and the standard acidity constant of the ion \(\text{HSO}_4^- \) in synthetic sea water from 273.15
to 318.15 K, The Journal of Chemical Thermodynamics, 22, 113-127, 10.1016/0021-

DOE: Handbook of methods for the analysis of the various parameters of the carbon dioxide
system in sea water, Carbon Dioxide Information Analysis Center, Oak Ridge National
Laboratory, 1994.

2009.

Duarte, C. M., Hendriks, I. E., Moore, T. S., Olsen, Y. S., Steckbauer, A., Ramajo, L.,
syndrome? Understanding anthropogenic impacts on seawater pH, Estuaries and Coasts,

Edmond, J. M.: High precision determination of titration alkalinity and total carbon dioxide
content of sea water by potentiometric titration, Deep-Sea Research, 17, 737-750,

upwelling of corrosive "acidified" water onto the continental shelf, Science, 320, 1490-
1492, 10.1126/science.1155676, 2008.

Maloy, C.: The combined effects of ocean acidification, mixing, and respiration on pH
and carbonate saturation in an urbanized estuary, Estuar. Coast. Shelf Sci., 88,
10.1016/j.ecss.2010.05.004, 2010.

Gaertner, J. C., Galzin, R., Gasparini, S., Ghiglione, J. F., Gonzalez, J. L., Goyet, C.,
Hir, P., Leblanc, K., Lefèvre, D., Lejeusne, C., Lemé, R., Loïé-Pilot, M. D., Mallet, M.,
Méjanelle, L., Mélin, F., Mellon, C., Mérigot, B., Merle, P. L., Migon, C., Miller, W. L.,
Mortier, L., Mostajir, B., Mousseau, L., Moutin, T., Para, J., Pérez, T., Petrenko, A.,
Poggiale, J. C., Prieur, L., Pujo-Pay, M., Pulido, V., Raimbault, P., Rees, A. P., Ridame,
C., Rontani, J. F., Ruiz Pino, D., Sicre, M. A., Taillandier, V., Tamburini, C., Tanaka, T.,
Taupier-Letage, I., Tedetti, M., Testor, P., Thébault, H., Thouvenin, B., Touratier, F.,
Tronczynski, J., Ulses, C., Van Wambke, F., Vantrepotte, V., Vaz, S., and Verney, R.:
Marine ecosystems’ responses to climatic and anthropogenic forcings in the
Millot, C., and Taupier-Letage, I.: Circulation in the Mediterranean Sea, in: The
Mediterranean Sea, edited by: Saliot, A., Springer Berlin Heidelberg, Berlin, Heidelberg,
Moulin, E., Jordens, A., and Wollast, R.: Influence of the aerobic bacterial respiration on the
eyearly dissolution of carbonates in coastal sediments, in: Progress in Belgian
Oceanographic Research: Proceedings of a Symposium Held at the Palace of Academies
Müller, J. D., Schneider, B., and Rehder, G.: Long-term alkalinity trends in the Baltic Sea
and their implications for CO₂-induced acidification, Limnol. Oceanogr.,
Oh, N.-H., and Raymond, P. A.: Contribution of agricultural liming to riverine bicarbonate
export and CO₂ sequestration in the Ohio River basin, Global Biogeochem. Cycles, 20,

Table 1. Previous estimates or documentation of pH change (ΔpH) in the Mediterranean Sea.

‘Total’ indicates estimates made for the whole Mediterranean Sea. TrOCA is the ‘Tracer combining Oxygen, inorganic Carbon, and total Alkalinity’ method, NR means ‘not reported’, and PI is ‘pre-industrial era’. *indicates studies where the reported pH change was assumed to be at in situ temperatures.

<table>
<thead>
<tr>
<th>Region</th>
<th>Site</th>
<th>Method</th>
<th>Study period</th>
<th>pH scale</th>
<th>°C</th>
<th>ΔpH yr⁻¹ ± SE</th>
<th>Total ΔpH</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>NW</td>
<td>Point B, 1 m</td>
<td>time-series, anomaly</td>
<td>2007-2015</td>
<td>total</td>
<td>in situ</td>
<td>-0.0028 ± 0.0003</td>
<td>-0.0252</td>
<td>This study</td>
</tr>
<tr>
<td>NW</td>
<td>Point B, 1 m</td>
<td>time-series, anomaly</td>
<td>2007-2015</td>
<td>total</td>
<td>25</td>
<td>-0.0017 ± 0.0002</td>
<td>-0.0153</td>
<td>This study</td>
</tr>
<tr>
<td>NW</td>
<td>Point B</td>
<td>model</td>
<td>1967-2003</td>
<td>total</td>
<td>in situ</td>
<td>-0.0014</td>
<td>-0.05</td>
<td>Howes et al. (2015)</td>
</tr>
<tr>
<td>NW</td>
<td>DYFAMED</td>
<td>time-series, observed</td>
<td>1995-2011</td>
<td>seawater</td>
<td>in situ</td>
<td>-0.003 ± 0.001</td>
<td>-0.051</td>
<td>Marcellin Yao et al. (2016)</td>
</tr>
<tr>
<td>NW</td>
<td>DYFAMED</td>
<td>time-series</td>
<td>1998-2000, comparison</td>
<td>2003-2005</td>
<td>seawater</td>
<td>in situ*</td>
<td>-</td>
<td>-0.02</td>
</tr>
<tr>
<td>NW</td>
<td>Gulf of Lion</td>
<td>TrOCA</td>
<td>PI-2011</td>
<td>NR</td>
<td>in situ*</td>
<td>-</td>
<td>-0.15 to -0.11</td>
<td>Touratier et al. (2016)</td>
</tr>
<tr>
<td>East</td>
<td>N Adriatic Sea</td>
<td>cruise comparison</td>
<td>1983, 2008</td>
<td>total</td>
<td>25</td>
<td>-0.0025</td>
<td>-0.063</td>
<td>Luchetta et al. (2010)</td>
</tr>
<tr>
<td>East</td>
<td>Otranto Strait</td>
<td>TrOCA</td>
<td>PI-1995</td>
<td>seawater</td>
<td>25</td>
<td>< -0.1 to -0.05, ± 0.014</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Total</td>
<td>Full profile</td>
<td>TrOCA</td>
<td>PI-2001</td>
<td>NR</td>
<td>in situ*</td>
<td>-</td>
<td>-0.14 to -0.05</td>
<td>Touratier and Goyet (2011)</td>
</tr>
<tr>
<td>Total</td>
<td>Bottom waters</td>
<td>model</td>
<td>1800-2001</td>
<td>total</td>
<td>in situ*</td>
<td>-</td>
<td>-0.06 to -0.005</td>
<td>Palmieri et al. (2015)</td>
</tr>
<tr>
<td>Total</td>
<td>Surface waters</td>
<td>model</td>
<td>1800-2001</td>
<td>total</td>
<td>in situ*</td>
<td>-</td>
<td>-0.084 ± 0.001</td>
<td>Palmieri et al. (2015)</td>
</tr>
<tr>
<td>Gibraltar Strait</td>
<td>Espartel sill</td>
<td>pH, pCO₂ sensors</td>
<td>2012-2015</td>
<td>total</td>
<td>25</td>
<td>-0.0044 ± 0.00006</td>
<td>-</td>
<td>Flecha et al. (2015)</td>
</tr>
</tbody>
</table>
Table 2. Time-series anomaly regression analyses on seawater carbonate chemistry at Point B for salinity (S), temperature (T), dissolved inorganic carbon (C_T), total alkalinity (A_T), pH_T, pH_T_{25}, pCO_2, calcite (Ω_c) and aragonite (Ω_a) saturation state, and salinity-normalized A_T (nA_T) and C_T (nC_T), at 1 and 50 m. Slopes represent the change in the variable unit per year. $P << 0.001$ indicates p-values far smaller than 0.001.

<table>
<thead>
<tr>
<th>Depth (m)</th>
<th>Variable</th>
<th>Slope ± SE</th>
<th>Intercept ± SE</th>
<th>N</th>
<th>F</th>
<th>df</th>
<th>Slope P</th>
<th>R^2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>S</td>
<td>-0.0017 ± 0.0044</td>
<td>3.38 ± 8.82</td>
<td>417</td>
<td>0.147</td>
<td>1,415</td>
<td>0.702</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>T (°C)</td>
<td>0.072 ± 0.022</td>
<td>-145 ± 44</td>
<td>413</td>
<td>10.999</td>
<td>1,411</td>
<td>0.001</td>
<td>0.026</td>
</tr>
<tr>
<td></td>
<td>C_T (µmol kg$^{-1}$)</td>
<td>2.97 ± 0.20</td>
<td>-5965 ± 400</td>
<td>416</td>
<td>221.87</td>
<td>1,414</td>
<td><<0.001</td>
<td>0.349</td>
</tr>
<tr>
<td></td>
<td>A_T (µmol kg$^{-1}$)</td>
<td>2.08 ± 0.19</td>
<td>-4189 ± 379</td>
<td>417</td>
<td>122.43</td>
<td>1,415</td>
<td><<0.001</td>
<td>0.228</td>
</tr>
<tr>
<td>1</td>
<td>pH_T</td>
<td>-0.0028 ± 0.0003</td>
<td>5.72 ± 0.66</td>
<td>412</td>
<td>74.205</td>
<td>1,410</td>
<td><<0.001</td>
<td>0.153</td>
</tr>
<tr>
<td></td>
<td>pH_{T25}</td>
<td>-0.0017 ± 0.0002</td>
<td>3.46 ± 0.43</td>
<td>412</td>
<td>64.204</td>
<td>1,410</td>
<td><<0.001</td>
<td>0.1354</td>
</tr>
<tr>
<td></td>
<td>pCO_2 (µatm)</td>
<td>3.53 ± 0.39</td>
<td>-7105 ± 776</td>
<td>412</td>
<td>83.927</td>
<td>1,410</td>
<td><<0.001</td>
<td>0.17</td>
</tr>
<tr>
<td></td>
<td>Ω_c</td>
<td>-0.0109 ± 0.0022</td>
<td>22.0 ± 4.5</td>
<td>412</td>
<td>24.08</td>
<td>1,410</td>
<td><<0.001</td>
<td>0.055</td>
</tr>
<tr>
<td></td>
<td>Ω_a</td>
<td>-0.0064 ± 0.0015</td>
<td>12.9 ± 3.1</td>
<td>412</td>
<td>17.33</td>
<td>1,410</td>
<td><<0.001</td>
<td>0.041</td>
</tr>
<tr>
<td></td>
<td>nA_T (µmol kg$^{-1}$)</td>
<td>2.20 ± 0.28</td>
<td>-4425 ± 560</td>
<td>412</td>
<td>62.34</td>
<td>1,410</td>
<td><<0.001</td>
<td>0.132</td>
</tr>
<tr>
<td></td>
<td>nC_T (µmol kg$^{-1}$)</td>
<td>3.12 ± 0.29</td>
<td>-6275 ± 579</td>
<td>412</td>
<td>117.48</td>
<td>1,410</td>
<td><<0.001</td>
<td>0.233</td>
</tr>
<tr>
<td>50</td>
<td>pH_{T25}</td>
<td>-0.0013 ± 0.0003</td>
<td>2.55 ± 0.54</td>
<td>407</td>
<td>21.863</td>
<td>1,405</td>
<td><<0.001</td>
<td>0.0512</td>
</tr>
<tr>
<td></td>
<td>pCO_2 (µatm)</td>
<td>2.79 ± 0.25</td>
<td>-5603 ± 501</td>
<td>407</td>
<td>125.1</td>
<td>1,405</td>
<td><<0.001</td>
<td>0.236</td>
</tr>
<tr>
<td></td>
<td>Ω_c</td>
<td>-0.0070 ± 0.0027</td>
<td>14.0 ± 5.4</td>
<td>407</td>
<td>6.648</td>
<td>1,405</td>
<td>0.01</td>
<td>0.0162</td>
</tr>
<tr>
<td></td>
<td>Ω_a</td>
<td>-0.0038 ± 0.0019</td>
<td>7.6 ± 3.7</td>
<td>407</td>
<td>4.155</td>
<td>1,405</td>
<td>0.042</td>
<td>0.0102</td>
</tr>
<tr>
<td></td>
<td>nA_T (µmol kg$^{-1}$)</td>
<td>1.15 ± 0.13</td>
<td>-2309 ± 254</td>
<td>407</td>
<td>82.309</td>
<td>1,405</td>
<td><<0.001</td>
<td>0.1689</td>
</tr>
<tr>
<td></td>
<td>nC_T (µmol kg$^{-1}$)</td>
<td>1.82 ± 0.19</td>
<td>-3661 ± 376</td>
<td>407</td>
<td>94.98</td>
<td>1,405</td>
<td><<0.001</td>
<td>0.19</td>
</tr>
</tbody>
</table>
Table 3. Deconvolution of pH$_T$ anomalies ($\frac{\partial pH_T}{\partial t}$, units pH$_T$ yr$^{-1}$) at 1 and 50 m.

Sensitivity of pH$_T$ with respect to variables ($\frac{\partial pH_T}{\partial \text{var}}$), where the variable var is either temperature (T), salinity (S), total alkalinity (A_T), or dissolved inorganic carbon (C_T), was multiplied by the anomaly of var ($\frac{\text{dvar}}{\text{dt}}$, Table 2). SE is standard error and RMSE is root-mean-squared error. Rounding was performed at the end of the calculations, prior to estimating percent contributions.

<table>
<thead>
<tr>
<th>Depth (m)</th>
<th>var</th>
<th>$\frac{\partial pH_T}{\partial \text{var}} \pm SE$</th>
<th>$\frac{\partial pH_T}{\partial \text{var}} \frac{\partial \text{var}}{\partial t} \pm \text{RMSE}$</th>
<th>Contribution (%)</th>
<th>$\frac{\partial pH_T}{\partial t} \pm \text{RMSE}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>T ($^\circ$C)</td>
<td>-0.0153 ± <0.001</td>
<td>-0.0011 ± 0.0003</td>
<td>41</td>
<td>-0.0027 ± 0.0005</td>
</tr>
<tr>
<td></td>
<td>S</td>
<td>-0.0117 ± <0.001</td>
<td><0.0001 ± 0.0001</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>A_T (µmol kg$^{-1}$)</td>
<td>0.0015 ± <0.001</td>
<td>0.0031 ± 0.0003</td>
<td>-115</td>
<td></td>
</tr>
<tr>
<td></td>
<td>C_T (µmol kg$^{-1}$)</td>
<td>-0.0016 ± <0.001</td>
<td>-0.0047 ± 0.0003</td>
<td>174</td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>T ($^\circ$C)</td>
<td>-0.0154 ± <0.001</td>
<td>-0.0014 ± 0.0003</td>
<td>54</td>
<td>-0.0026 ± 0.0005</td>
</tr>
<tr>
<td></td>
<td>S</td>
<td>-0.0116 ± <0.001</td>
<td><0.0001 ± <0.0001</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>A_T (µmol kg$^{-1}$)</td>
<td>0.0015 ± <0.001</td>
<td>0.0024 ± 0.0002</td>
<td>-92</td>
<td></td>
</tr>
<tr>
<td></td>
<td>C_T (µmol kg$^{-1}$)</td>
<td>-0.0016 ± <0.001</td>
<td>-0.0035 ± 0.0003</td>
<td>135</td>
<td></td>
</tr>
</tbody>
</table>
Table 4. Deconvolution of pCO$_2$ anomalies (dpCO_2/dt, µatm yr$^{-1}$) at 1 and 50 m. Details are the same as in Table 3.

<table>
<thead>
<tr>
<th>Depth (m)</th>
<th>var</th>
<th>$\frac{\text{dpCO}_2}{\text{d} \text{var}} \pm \text{SE}$</th>
<th>$\frac{\text{dpCO}_2}{\text{d} \text{var}}$</th>
<th>Contribution (%)</th>
<th>$\frac{\text{dpCO}_2}{\text{dt}} \pm \text{RMSE}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>T (ºC)</td>
<td>16.49 ± 0.05</td>
<td>1.19 ± 0.36</td>
<td>37</td>
<td>3.23 ± 0.57</td>
</tr>
<tr>
<td></td>
<td>S</td>
<td>10.14 ± <0.01</td>
<td>-0.02 ± 0.05</td>
<td>-1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>A_T (µmol kg$^{-1}$)</td>
<td>-1.478 ± 0.005</td>
<td>-3.08 ± 0.28</td>
<td>-95</td>
<td></td>
</tr>
<tr>
<td></td>
<td>C_T (µmol kg$^{-1}$)</td>
<td>1.735 ± 0.006</td>
<td>5.14 ± 0.35</td>
<td>159</td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>T (ºC)</td>
<td>15.55 ± 0.03</td>
<td>1.37 ± 0.29</td>
<td>48</td>
<td>2.84 ± 0.49</td>
</tr>
<tr>
<td></td>
<td>S</td>
<td>9.355 ± <0.001</td>
<td>0.06 ± 0.02</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>A_T (µmol kg$^{-1}$)</td>
<td>-1.327 ± 0.002</td>
<td>-2.11 ± 0.20</td>
<td>-74</td>
<td></td>
</tr>
<tr>
<td></td>
<td>C_T (µmol kg$^{-1}$)</td>
<td>1.629 ± 0.005</td>
<td>3.52 ± 0.34</td>
<td>124</td>
<td></td>
</tr>
</tbody>
</table>
Figure 1. Map of study region in the NW Mediterranean Sea (a), along the North current (b) in the Bay of Villefranche-sur-Mer, France (c). Point B, EOL buoy, and the offshore time-series station DYFAMED are marked. Bathymetric line units are m (c).
Figure 2. Time-series observations (a-g) and anomaly trends (h-n) for temperature, salinity, and seawater carbonate chemistry at Point B, 1 m. Regression slopes are drawn ± SE (in grey) and noted with a star for significance at $\alpha = 0.05$. Variable abbreviations are the same as in Table 2.
Figure 3. Time-series observations (a-g) and anomaly trends (h-n) for temperature, salinity, and seawater carbonate chemistry at Point B, 50 m. Regression slopes are drawn ± SE (in grey) and noted with a star for significance at $\alpha = 0.05$. Variable abbreviations are the same as in Table 2.
Figure 4. Monthly distribution of seawater carbonate chemistry at Point B, 1 m, using a combination of a violin plot showing the relative frequency of the observations (shaded blue area) and a boxplot showing the median, first and third quartiles, as well as outliers (blue).
Figure 5. Monthly trends of total alkalinity (A_T, blue) and dissolved inorganic carbon (C_T, green) for the period 2007-2015. Errors bars are ± SE of the slope estimate and significance is noted (*) at $\alpha = 0.05$.
Figure 6. Salinity and total alkalinity (A_T) relationships at Point B for the period 2007-2015, by year, at 1 m. Data points are colored for month.
Figure 7. Time-series pH_T (a) and temperature (b) from SeaFET pH sensor deployments at EOL, 2 m. Discrete calibration samples are noted in green, and grey vertical lines bracket deployment periods (a). Calibration sample offsets from processed pH time-series are shown in panel (c). Violin and boxplots (see Fig. 4) show diel pH range by month (d), and an example of this pH variability is shown for May 2015 (e).