Note to editor regarding format of this response

Reviewer comments (1) are given in black

Author responses (2) are given in red

Corresponding lines changed (3; in tracked-changes version below) are given in blue

Response to Interactive comment on “El Niño, La Niña, and the global sea level budget” by Anonymous Referee #1

(1): This paper quantifies the relative importance of steric and barystatic contributions to global mean sea level change associated with ENSO. It is logically arranged, well presented, concise and careful, and I hope it will be published.

I don’t have any detailed comments on the text, which is very well written. I have a few comments on aspects of the method and conclusions.

(2): We appreciate the reviewer’s positive evaluation of our paper. The manuscript has been revised accordingly, as described in the responses given below.

(1): Is there a possible thermosteric contribution from depths greater than 2000 m, which are not sampled by Argo? Previous studies suggest that this is non-negligible for the GMSL trend e.g. Church et al. (2011) 10.1029/2011GL048794.

(2): The deep ocean’s contribution to climate variability and change remains uncertain. The findings of Church et al. cited by the referee are taken from the Purkey and Johnson (2010) results, based on precise but spatiotemporally sparse hydrographic section data. Models disagree on the nature of deep ocean changes—some show warming (e.g., Song and Colberg 2011), others cooling (e.g., Wunsch and Heimbach 2014), and still others no significant thermal changes at all during recent decades (e.g., Piecuch et al. 2015). In our analysis, any deep ocean steric contributions would appear in the budget residual term, which is indistinguishable from zero (Table 1). This result is in some senses analogous to findings in Llovel et al. (2014) with regard to the deep ocean temperature trend over the 2005-2013 interval.

(3) We mention these topics in the paper revision, explaining that, based on our results, any contributions from un-sampled regions are indistinguishable from zero (see lines 124-127 in the tracked-changes manuscript below).

(1): The method assumes the form of the predictors: MEI, constant linear trend, and sinusoidal annual cycle. If the long-term variation is not a constant rate of change, the
annual cycle is not sinusoidal, or the MEI is not the right measure of ENSO variation, I suppose that the results will have a systematic error, and the conclusion might not be accurate. How well justified are these assumptions?

(2): A degree of subjectivity in model selection is inevitable and unavoidable. We believe that the form of the predictors assumed here is reasonable judging from previous works (cited in the introduction). Regression onto these parameters explains 96% (99%) of the monthly variance in the altimetric sea level record over 2005-2015 (1993-2015), and the regression coefficients are all significant, suggesting that our assumptions are justified. Using indices other than the MEI, or allowing lags between MEI and GMSL, yields similar results. Variations in the GMSL annual cycle or its long term rate of change are of course possible but are not obvious from the altimetry data, and addressing these issues would require a more detailed and dedicated study beyond the scope of our analysis.

(3) In the revision, we argue more clearly that our assumptions are justified (lines 109-113 in the tracked-changes version below).

(1): Did the authors consider regressing GMSL (from altimetry) against the barystatic and thermosteric contributions as predictors? In that case OLS would be inaccurate because it assumes there is no error in the independent variable, but total least squares (orthogonal regression) could be used.

(2): We appreciate being made aware of the method of total least squares for the case that the predictors have errors. For various reasons, we hesitate to regress GMSL onto barystatic and thermosteric terms, as suggested by the reviewer. From a mathematical perspective, such a regression would be problematic, because, as we show in the paper (Fig. 1), barystatic and thermosteric terms are correlated. Thus, the regressors would not be linearly independent, as required by least squares. Further, and notwithstanding correlation between the regressors, such regression would be physically unenlightening; from the hydrostatic relation (cf. Eqn. 2.11 in Gill and Niiler 1973), it must be that the coefficients of such a regression equal one, and hence there is insufficient motivation to perform the additional analyses suggested by the reviewer.

(3) For these reasons, we have not made any changes to the paper on these points.

(1): Having reached their conclusion that barystatic and thermosteric contributions are of comparable importance, could the authors comment on why previous authors reach different conclusions—the situation they described as “confusing” in the introduction

(2): There are a few potential reasons for this confusion, some of which are given below: The nature of GMSL changes linked to ENSO has been inferred from observations of isolated events, such as the 2010/2011 La Niña. These particular events might not be representative of the general GMSL response to ENSO. As revealed by Fasullo et al. (2013), isolated GMSL events can be related not only to ENSO but also, for example, IOD
and SAM. These considerations complicate interpretation of GMSL, barystatic, and thermosteric data for isolated events in terms of GMSL response during ENSO events more generally.

Some studies base conclusions regarding barystatic contributions to changes in GMSL on strong correlation between the two signals. But, correlations only take into account the relative phase of the signals, and not their relative magnitudes. This can paint a deceptive picture in the present context. To give a toy example, consider two time series, \(x(t) = \sin(t) \) and \(y(t) = 2\sin(t) \). Obviously, \(x \) and \(y \) are perfectly correlated, but the changes in \(x \) do not entirely account for changes in \(y \), as the former only has half the magnitude of the latter. Thus, in cases such as the present, where all terms (i.e., GSML, steric, barystatic) exhibit similar phase behavior, but varying magnitude, a more thorough analysis must consider both phasing and magnitude of the signals.

Observational and modeling products used to evaluate the steric and barystatic effects on sea level changes are of course characterized by errors. For instance, as we show below in our response to Referee #2, Argo grids processed by different centers can show important differences regionally and globally. These errors in models and data could lead to links between GMSL and its components that are too strong or weak.

Language has been added to the revised introduction and conclusion that speaks to these points without unduly criticizing previous works (lines 36-39 and 228-231 in the tracked-changes version of the manuscript).

A minor point: it would be useful to note in Table 1 caption that \(n^* \) is evaluated following Eq. A3.

We will certainly make this note in the revised manuscript.

See Caption to Table 1 in the tracked changes version of the paper below.

Could Fig 5 be put as a panel in Fig 1? It would be helpful to draw attention to the difference between Figs 1a and 5. The most relevant one is that Fig 5 is the whole altimeter period. Are they different otherwise?

While it’s admittedly a matter of subjective, aesthetic preference, we are hesitant to add Figure 5a as a panel in Figure 1, since the former covers a time period different from that in the other Figure 1 panels. Nevertheless, we will add text into the manuscript that points out the differences between the two figures. These differences include the period of display, as pointed out by the reviewer, and also the facts that the (removed) annual cycle and linear trend are estimated for the 2005-2015 period in Figure 1 while they are estimated for the 1993-2015 period in Figure 5a.

See lines 218-220 in the revised tracked changes version below.
Response to Interactive comment on “El Niño, La Niña, and the global sea level budget” by Anonymous Referee #2

(1): The paper discusses the steric and barystatic contributions to the global mean sea level record from satellite altimetry during ENSO events. While previous studies have mainly focused on barystatic contributions, this study focuses primarily on the steric contribution to La Nina and El Nino events in sea level. The paper is well written and structured and presents some interesting ideas. Similar to reviewer #1, I mainly have a few general questions for the authors.

(2): We appreciate the reviewer’s positive evaluation of our paper. The manuscript has been revised accordingly, as described in the responses given below.

(1): Correlation/regression analysis: Given the complex nature of the response to ENSO particularly in barystatic sea level, I wonder if a correlation analysis directly provides conclusive results. As for example Llovel et al., 2010, Fasullo et al., 2012 allude to, the response of the barystatic sea level to ENSO events is related to the complex response of the water cycle, which includes where evaporation/precipitation is generated, what the specific wind patterns are like, what is the setup of the hydrologic basin etc. Hence, the response in the mass part of sea level may be tied to regional variability in the extent of ENSO events as well as their strength. This makes it difficult to only use correlation and regression to quantify the response. However, for the steric part the response may be a bit more straightforward as it is mainly a warming/cooling signal of the upper ocean as this study partly also suggest. In general – as reviewer #1 also mentions – a correlation analysis can easily be misleading if one of the components is not well determined (be it by length of record or definition of indices etc.). Nevertheless, it is very interesting to see the impacts on the different layers in various ocean basins (e.g. Fig. 3, line 142ff) and think it would be great to see more details on this aspect of the study. In particular, it may be interesting to see how spatial patterns of the warming/cooling signals compare – in particular, between the different ARGO products and also compared to altimetry minus GRACE (e.g. total warming vs. layer structure).

(1): There are many warranted concerns being voiced here. Some are already addressed in the manuscript. We acknowledge that, due to the short duration of the data records, some of the relationships seen here may be specific to the time period studied, and not representative of ‘the’ GMSL response during ENSO (cf. lines 220-224 below).

We admit that more details on the spatial patterns of steric changes would be of interest to the reader. While the difference between altimetry and GRACE is a vertically integrated measure, and does not give insight onto vertical structure, some analyses along the lines suggested by the reviewer are possible. For example, comparing steric changes globally and regionally from the two Argo centers (Scripps and IPRC) would be straightforward to perform and interpret (i.e., in terms of differing data processing strategies between the two centers), and will be included in the revised manuscript (see
immediately below).

(1) Data products: Two ARGO products are being used for this study. Given the spread between data products and the focus of this paper being the steric contribution, it would be interesting to see a more detailed comparison between the two products used (or even add a third). So far, the differences in the products have mainly been evaluated to determine the error bar for the estimates but it may be worthwhile to look into the spatial distribution and spread for specific ENSO events in more detail.

(2) Given our focus on steric contributions, assessment of uncertainties in various steric products is important. A comprehensive assessment is beyond our scope, better left to a more technical dedicated manuscript, but we will give a few preliminary ‘case examples’ comparing Scripps and IPRC during particular events. As shown in the figures below, the two products differ noticeably in terms of anomalous regional temperature and global steric changes during the recent El Niño (e.g., last six months of 2015, July-December).

(3) We include similar figures in the revised paper (see edited Figure 1a and new Figure 5), point out the discrepancies, and encourage a more thorough future assessment (see lines 119-215 in the revised tracked changes version below).

(1) Additional data: To add statistical significance to the steric analysis, I am wondering if the inclusion of ECCO output might be useful. The longer time series could support the correlation and regression analysis as well as basic comparisons of depths of the warming/cooling signals in the different ocean basins.

(2) We agree that considering an ECCO solution would allow analysis of a longer period (1992-present). It would also facilitate a more detailed mechanistic understanding of the processes contributing to the global and regional steric changes. Yet, such consideration would make for a much longer paper with a considerably different scope. We think that there is value in providing a concise “first analysis” of the GMSL budget related to ENSO events based purely on observations.

(3) In the discussion of the revision, we point more explicitly to an analysis along the lines suggested by the reviewer as a logical “next step” in the investigation of GMSL changes linked to ENSO variability (see lines 172-176 in tracked changes version below).

References

Purkey and Johnson (2010), J. Climate, 23, 6336-6351.

Figures

Figure R1: Time series of nonseasonal anomalous thermosteric sea level from: average of SIO and IPRC products (black); SIO product (dark gray); and IPRC data (light gray).

Figure R2: (A) Spatial map of nonseasonal anomalous steric sea level averaged over the last six monthly of 2015 (July-December) based on SIO gridded data. (B) As in (A) but computed using gridded data from IPRC. (C) Difference (A) minus (B).
El Niño, La Niña, and the global sea level budget

Christopher G. Piecuch¹ and Katherine J. Quinn¹

¹Atmospheric and Environmental Research, Inc., Lexington, MA 02421, USA.

Correspondence to: Christopher G. Piecuch (cpiecuch@aer.com)

Abstract. Previous studies show that nonseasonal variations in global-mean sea level (GMSL) are significantly correlated with El Niño-Southern Oscillation (ENSO). However, it has remained unclear to what extent these ENSO-related GMSL fluctuations correspond to steric (i.e., density) or barystatic (mass) effects. Here we diagnose the GMSL budget for ENSO events observationally using data from profiling floats, satellite gravimetry, and radar altimetry during 2005–2015. Steric and barystatic effects make comparable contributions to the GMSL budget during ENSO, in contrast to previous interpretations based largely on hydrological models, which emphasize the barystatic component. The steric contributions reflect changes in global ocean heat content, centered on the Pacific. Distributions of ocean heat storage in the Pacific arise from a mix of diabatic and adiabatic effects. Results have implications for understanding the surface warming slowdown and demonstrate the usefulness of the Global Ocean Observing System for constraining Earth’s hydrological cycle and radiation imbalance.

1 Introduction

Sea level is an informative index of climate and serious concern for coastal communities. Hence, understanding the modern altimetry record is important from scientific and societal vantage points. The most apparent signals in the altimetric global-mean sea level (GMSL) data are the annual cycle and linear trend (e.g., Figure 4 in Masters et al., 2012). In principle, these changes in the global ocean’s water volume relate to the ocean’s mass and its density, referred to as ‘barystatic’ and ‘steric’ sea level changes, respectively (e.g., Gregory et al., 2013; Leuliette, 2015). Past studies have successfully used in situ hydrography and satellite gravity data to assess ocean mass and density changes and to evaluate barystatic and steric effects on the annual cycle and the linear trend in GMSL (e.g., Lom-
bard et al., 2007; Willis et al., 2008; Cazenave et al., 2009; Leuliette and Miller, 2009; Leuliette and Willis, 2011; Leuliette, 2014, 2015).

Although the annual cycle and linear trend are the most prominent signals in the record, altimeter data also evidence more subtle GMSL variations superimposed on those signals. In particular, it has long been reported that nonseasonal GMSL anomalies are significantly correlated with El Niño-Southern Oscillation (ENSO), such that the GMSL is anomalously positive during warm El Niño phases and anomalously negative during cool La Niña phases (Nerem et al., 1999; Chambers et al., 2002; Ngo-Duc et al., 2005; Landerer et al., 2008; Merrifield et al., 2009; Llovel et al., 2010; Nerem et al., 2010; Llovel et al., 2011; Boening et al., 2012; Cazenave et al., 2012; Meyssignac and Cazenave, 2012; Stammer et al., 2013; Fasullo et al., 2013; Haddad et al., 2013; Meyssignac et al., 2013; Calafat et al., 2014; Cazenave et al., 2014; Dieng et al., 2014; Pugh and Woodworth, 2014; Dieng et al., 2015). Recent papers argue that ENSO-related GMSL changes are essentially of barystatic origin, related to changes in the hydrological cycle, and patterns of precipitation and evaporation (Llovel et al., 2011; Boening et al., 2012; Cazenave et al., 2012, 2014; Fasullo et al., 2013). However, these papers are based on either observations during an isolated event or models of model output, and the extent to which barystatic or steric effects are responsible for ENSO-related GMSL fluctuations more generally has not been firmly established based on observations. In fact, conflicting accounts of the GMSL budget during ENSO events are given in the literature. For example, based on altimetry, sea-surface temperature data, and ocean model output, Nerem et al. (1999) reason that the anomalous GMSL rise during the 1997–1998 El Niño was due to thermal expansion of the upper ocean. In contrast, using altimetry and global hydrological models, Ngo-Duc et al. (2005), Llovel et al. (2011), and Cazenave et al. (2012) argue that this anomalous rise in GMSL was owing to an increase in global ocean mass. On the one hand, based on satellite data and in situ observations, Boening et al. (2012) and Fasullo et al. (2013) conclude that the anomalous fall in GMSL during the 2010–2011 La Niña was related to a decrease in global ocean mass. On the other hand, and based on very similar datasets, Dieng et al. (2014) conclude differently, finding that this anomalous GMSL fall was owing in approximately equal parts to barystatic and steric contributions.

The literature thus paints a confusing portrait. Clarifying the nature of ENSO-related GMSL variations is important for understanding the ocean’s role in Earth’s hydrological cycle and energy imbalance (e.g., Fasullo et al., 2013; Leuliette, 2015). Here we exploit the growing record length of the Global Ocean Observing System, analyzing satellite gravity, radar altimetry, and in situ hydrographic observations using linear estimation (regression) to elucidate observationally the nature of the altimetric GMSL budget for ENSO events.
2 Datasets

2.1 Satellite altimetry

We study GMSL records from four groups: AVISO (Ablain et al., 2009), Colorado (Nerem et al., 2010), NOAA (Leuliette and Scharroo, 2010), and CSIRO (Church and White, 2011). Time series derive from the reference altimetry missions (TOPEX/Poseidon, Jason-1, -2). The standard corrections (postglacial rebound, wet troposphere, inverted barometer) are made and a 60-day filter is used to remove a spurious 59-day signal (Masters et al., 2012). Time series are interpolated onto regular monthly intervals over 1993–2015 and we use the ensemble average across the interpolated records. A standard error (Table 1) is estimated based on variances in differences between time series (cf. Ponte and Dorandeu, 2003).

2.2 Profiling floats

Monthly Argo in situ temperature and salinity grids produced by Scripps Institution of Oceanography (SIO) and International Pacific Research Center (IPRC) are also employed. The grids are generated using objective analysis applied to quality controlled float profiles (Roemmich and Gilson, 2009). Fields span from 65°S to 65°N latitudinally, and down to ~2000 m, but do not cover marginal shelf seas. We use the data for the period 2005–2015, since float coverage was not sufficient before then (Leuliette, 2015, and references therein). We use these gridded fields to evaluate steric sea level following Gill and Niiler (1973). And as with altimetry data, we use the average of the SIO and IPRC time series, deriving a standard error using the difference between these products (Ponte and Dorandeu, 2003).

2.3 Gravimetric retrievals

Monthly estimates of the barostatic sea level term based on retrievals from the Gravity Recovery and Climate Experiment (GRACE) (e.g., Tapley et al., 2004) are also considered. Values are from Release-05 data processed by the three main science data system centers at CSR (Bettadpur, 2012), JPL (Watkins and Yuan, 2012), and GFZ (Dahle, 2013). These data are then postprocessed by Don P. Chambers at University of South Florida following the methods detailed in Chambers and Bonin (2012) and Johnson and Chambers (2013). We consider the ensemble mean across the estimates, deriving an estimate of the standard error according to variances in the differences between series (Ponte and Dorandeu, 2003). To be overlapping with Argo, we consider the GRACE ocean mass data over 2005–2015.
3 Results and discussion

Figure 1a shows nonseasonal anomalies of GMSL (i.e., annual cycle and trend removed) alongside the Multivariate ENSO Index (MEI) (Wolter and Timlin, 1998) over 2005–2015. As in earlier papers cited above, there is a tight relation between GMSL and MEI curves, such that the GMSL is higher during El Niño periods and lower during La Niña periods. The Pearson product-moment correlation coefficient (hereafter simply referred to as the correlation) between these two records (0.73) is significant at the 95% confidence level and suggests that approximately half of the nonseasonal anomalous GMSL variance over this period corresponds to ENSO. More generally, we observe that correlation between the nonseasonal GMSL and MEI anomalies is significant for all other 11-year periods during the altimeter record, as well as for the entire 23-year altimetric record itself (not shown).

Nonseasonal GMSL anomalies from satellite altimetry data are consistent with the sum of barystatic and steric components from GRACE and Argo (Figure 1b). The correlations between GMSL from GRACE and Argo and from altimetry (0.89), and between MEI and sum of GRACE and Argo (0.67) are both significant. Correlation values between GRACE and the MEI (0.54; Figure 1c) and Argo and the MEI (0.65; Figure 1d) are also significant. In fact, all pairs of time series displayed in Figure 1 are significantly correlated (not shown). These results suggest that GMSL fluctuations tied to ENSO and seen by satellite altimetry are independently corroborated by the other ocean observing platforms and that barystatic and steric terms both contribute to the significant relationship between GMSL and ENSO.

To consider the GMSL budget related to ENSO more formally, we use linear estimation, namely ordinary least squares (OLS). We model the observations as linear combinations of decadal trend, annual cycle, and MEI regressors, simultaneously solving for the regression coefficients for all predictors by minimizing the residual. This particular form of linear regression is motivated by previous studies referenced in the introduction. Indeed, the regression explains \(\geq 90\% \) of the variance in the GMSL, barystatic, and steric curves over 2005–2015, and the coefficients of the regressors are all statistically significant, as revealed in Table 1 and discussed in more detail below, suggesting that this form of regression model is justified. While OLS assumes the residuals behave as white noise, in practice we find that residuals are serially correlated (not shown). Thus, we inflate the standard errors according to the lag-1 autocorrelation and the effective degrees of freedom as detailed in Chambers et al. (2012) and Calafat and Chambers (2013). More technical details of our methods are found in Appendix A.

Table 1 shows results of this OLS procedure applied to altimetry, GRACE, and Argo. All quoted values are 90% confidence intervals as described in Appendix B. (Since they are not our focus here, we defer discussion of the results for the annual cycle and linear trend to Appendix C.) Per unit MEI change, altimetric GMSL changes by \(2.76 \pm 1.87 \) mm, which is close to the value of \(2.97 \pm 1.47 \) mm given by the sum of Argo steric and GRACE barystatic terms. Indeed, the residual value is not
statistically distinguishable from zero ($\pm 0.20 \pm 0.64$ mm), showing that the GMSL budget related to ENSO can be closed using observational data. Closure of the budget implies that steric contributions from regions not sampled by Argo (shelf seas, Arctic Ocean, below 2000 m) cannot be detected over the study period. Llovel et al. (2014) reach a similar conclusion regarding deep ocean steric contributions to the GMSL trend budget over 2005–2013. Significant regression coefficients are also determined for Argo steric (1.42 ± 0.53 mm) and GRACE barystatic (1.54 ± 1.50 mm) components. The error bars on the barystatic term are comparatively wider than on the steric term, agreeing with the relatively stronger correlation between Argo and MEI than between GRACE and MEI seen above (Figure 1).

The OLS regression coefficients demonstrate that steric and barystatic effects generally make comparable contributions to the ENSO-related GMSL changes over the study period. Judging from Monte Carlo simulations performed using values in Table 1 (see Appendix D), it is as likely as not (33–66% likelihood) that barystatic effects are responsible for 45–58% of the sum of barystatic and steric contributions to GMSL variations linked to ENSO, and very unlikely (< 10% likelihood) that the barystatic term amounts to > 68% (Figure 2). This is at odds with the emphasis placed on the barystatic contribution by recent studies (e.g., Llovel et al., 2011; Cazenave et al., 2012, 2014), revealing that, at least over this time period, the steric component is equally as important.

Regional distributions of ENSO-related terrestrial water storage, which are ultimately coupled to the barystatic contributions to GMSL fluctuations through mass conservation, are explored in past papers (Llovel et al., 2011; Boening et al., 2012; Phillips et al., 2012; Fasullo et al., 2013; de Linage et al., 2013; Eicker et al., 2016); they are not revisited here. However, ENSO-related GMSL behavior owing to steric effects is not as well understood. The steric contributions to the GMSL fluctuations related to ENSO arise from changes in ocean heat content. Arguments based on mass conservation (Munk, 2003) suggest that any global steric contributions resulting from salinity changes would be exceedingly small. To elucidate ocean heat content changes potentially contributing to GMSL changes related to ENSO, we apply the OLS method to Argo vertical potential temperature profiles, averaging horizontally over the global ocean as well as individual ocean basins (Figure 3).

There is significant warming of the global ocean’s surface waters (0–100 m) and cooling within its main thermocline (130–320 m) during El Niño periods. Marginally significant warming also occurs at some intermediate depths (600–650 m). On the whole, the global upper ocean (0–2000 m) gains 5.5 ± 5.2 ZJ (ZJ $\equiv 10^{21}$ J) of heat per unit of MEI increase (equivalent to a spatially uniform global ocean temperature variation of $\lesssim 0.001^\circ$C). While there are some significant thermal changes related to ENSO observed in other basins at some depths (< 60 m in the Indian; > 1350 m in the Atlantic), the vertical structure of the global ocean’s ENSO-related thermal variations derives from the Pacific, where there is similar warming near the surface (0–110 m), cooling in the thermocline (130–320 m), and warming of intermediate waters (500–1150 m). Indeed, only the Pacific experiences significant net thermal changes during ENSO, which is hardly
surprising seeing as ENSO originates from coupled air-sea interactions in the Pacific (e.g., Clarke, 2008, and references therein).

Given only the Argo data, one cannot unambiguously assess heat budgets for the various layers over the different basins. One possible interpretation is that net Pacific heat storage is owing to local surface heat exchanges with the atmosphere. This interpretation assumes no contributions from the deep (> 2000 m) and no fluxes between basins, and demands heat fluxes from the thermocline layer to the surface and intermediate layers (Figure 4). Our interpretation is supported by Mayer et al. (2014), who argue that ocean heat storage over the tropical Pacific (30°S–30°N) during ENSO is balanced by surface heat exchanges. Other interpretations are possible given the data, but would imply that surface heat fluxes over every other basin are balanced and compensated by ocean heat transports out of or into that basin. Any more definitive diagnosis of the heat budgets would require a more advanced approach, e.g., based on a physically consistent state estimate constrained by the available ocean observations. For example, future studies could use an ocean state estimate covering the altimetric era (e.g., Forget et al., 2015), which is beyond our scope and deferred to future study, not only to investigate a longer time period and corroborate or refute the purely observational results presented here, but also to better understand the physical processes contributing to the global and regional steric changes (cf. Piecuch and Ponte, 2011, 2014).

Previous studies suggest that both the global ocean and climate system lose heat during El Niño events (e.g., Roemmich and Gilson, 2011; Loeb et al., 2012; Trenberth et al., 2014). This would appear to conflict with our finding that the ocean is warmer during El Niños. However, the discrepancy is only apparent, since we consider ocean heat content and those past studies focus on the ocean heat content tendency (i.e., its rate of change). Moreover, scrutinizing visual examination of the earlier results (e.g., Figure 8 in Trenberth et al., 2014) suggests that there is a phase lag between ENSO and the heat content tendency, such that warming precedes El Niño peaks and cooling follows peaks. This would be fully consistent with our findings, and those of von Schuckmann et al. (2014), who show a negative global ocean heat content anomaly during the 2010–2011 La Niña. It would be helpful for future studies to examine Future studies should investigate in closer detail the coherence between variations in ocean heat content and ENSO.

These results have implications for understanding the recent ‘surface warming slowdown’, which some partly relate to the dominant La Niña phase of the 2000s relative to the 1990s (Kosaka and Xie, 2013; Cazenave et al., 2014; England et al., 2014; Risbey et al, 2014). Nieves et al. (2015) determine that the slowdown was caused by a decadal shift in Indo-Pacific heating; they show that the Pacific Ocean above 100 m cooled while the Indian Ocean between 100–300 m warmed from the 1990s to the 2000s, but that the rate of global ocean heat storage above 1500 m did not change during that time. Our results (Figure 3) suggest that cooling of the surface Pacific between the two decades is consistent with phasing of ENSO, but subsurface Indian warming and lack of net ocean warming or cooling are not, hinting that processes unrelated to ENSO also contributed to the surface warming
slowdown, consonant with papers showing an important role for the Interdecadal Pacific Oscillation (Meehl et al., 2013; Trenberth and Fasullo, 2013; Steinman et al., 2015; Fyfe et al., 2016).

We note that in this study, SIO and IPRC Argo datasets were considered. While reflected in the standard errors, differences between these two products are apparent. For example, while both curves evidence an overall increase from the beginning of 2011 to the middle of 2015, the SIO and IPRC global steric height series diverge thereafter, with IPRC turning down and decreasing, and SIO continuing to rise through the latter half of 2015 (Figure 1d). These global differences stem from regional discrepancies (Figure 5). Nonseasonal steric height patterns over the global ocean from SIO and IPRC from July to December 2015 are generally similar, but manifest clear discrepancies in the North Pacific, such that SIO shows more negative values than IPRC near the equator towards the west, and more positive values over the tropics more broadly (Figure 5c). Differences between the datasets could be due to different data sources, vertical resolution, or processing strategies. More detailed future studies should more definitively attribute such discrepancies. Results shown in Llover et al. (2014) attest to similar differences between SIO and IPRC datasets with regard to the global steric height trend over 2005–2013. Our qualitative conclusions are robust to such quantitative differences between the Argo datasets; for example, employing either SIO or IPRC only, the GMSL budget related to ENSO closes (not shown), and it is unlikely (< 33% likelihood) that the barystatic term contributes > 68% to the sum of barystatic and thermosteric contributions to the GMSL changes linked to ENSO (Figure 2).

Finally, nonseasonal anomalous GMSL was considerably higher during the 2014–2015 El Niño than during the 1997–1998 El Niño (Figure 6), which is noteworthy because these two El Niño events were comparable in amplitude. (In addition to the distinct axis limits, Figures 1a and 6 differ in that the removed linear trend and annual cycle are estimated for 2005–2015 in the former and 1993–2015 in the latter.) This could suggest that the relationship between GMSL and ENSO is a complicated function of time period and frequency band, in which case the results presented here apply strictly to the study period. However, it could also suggest that other climate modes (e.g., Pacific Decadal Oscillation (e.g., Hamlington et al., 2016)) exert an influence on GMSL that has yet to be discussed. Addressing these interesting topics is beyond our scope and left for future investigations.

4 Conclusions

It has long been recognized that nonseasonal variations in global-mean sea level (GMSL) are correlated with measures of El Niño-Southern Oscillation (ENSO), but the nature of such GMSL fluctuations tied to ENSO, whether steric or barystatic, has remained unclear. We diagnosed the GMSL budget related to ENSO based on used linear estimation to consider a decade’s worth of altimetry, GRACE, and Argo data processed by different research centers, thus clarifying the nature of the GMSL balance related to ENSO. Fluctuations in ENSO, GMSL, and barystatic and steric terms
are significantly correlated (Figure 1). Barystatic and steric components render comparable contributions to GMSL changes during ENSO events (Table 1). The steric contributions reflect ocean heat storage across various depths in the Pacific Ocean (Figure 3). We offered a heuristic interpretation of the Pacific heat budget during ENSO periods in terms of diabatic exchanges at the sea surface and adiabatic redistributions within the ocean interior (Figure 4), but more work is needed in the future to diagnose more definitively the relative contributions of surface fluxes, interbasin exchanges, vertical transports, and the deep ocean on the heat budgets. More work is also needed to understand differences between gridded Argo datasets (Figure 5), and to determine why the anomalous GMSL response to ENSO was apparently much stronger during the 2014–2015 El Niño than during the 1997–1998 El Niño (Figure 6). Our results corroborate previous suggestions made based on models (Landerer et al., 2008) or observations during an isolated event (Dieng et al., 2014, 2015) that steric contributions to ENSO-related GMSL fluctuations are not negligible relative to barystatic contributions. These findings also have implications more generally for understanding the ocean’s role in the planet’s radiation imbalance and hydrological cycle.

Acknowledgements. The authors were supported by Support for this research came from NASA grants NNX14AJ51G and NNH16CT00C. Helpful conversations with Steve Nerem, Rui Ponte, Don Chambers, and John Gilson are acknowledged. Two anonymous reviewers made valuable comments and suggestions, especially with respect to comparing the Argo datasets. The providers of the datasets are formally acknowledged in Appendix E and Table 2.

Appendix A: Description of OLS method

Let us regard the altimetric GMSL record (or any other data series for that matter) \(Y \) for 2005–2015 (including trend and annual cycle) as a linear combination of predictors \(X \),

\[
Y = X\beta + \varepsilon. \quad (A1)
\]

Here \(X \) includes the linear trend (slope and intercept), annual cycle (sine and cosine), and MEI, \(\varepsilon \) is the error term, and \(\beta \) contains the regression coefficients to be solved for. The OLS estimator for \(\beta \) is that vector which minimizes the variance between \(Y \) and \(X\beta \),

\[
\hat{\beta} = MY, \quad (A2)
\]

where \(M = (X^TX)^{-1}X^T \) is the Moore-Penrose pseudo-inverse and \(T \) is matrix transpose. While OLS assumes white noise residuals, we find that \(\varepsilon \) is autocorrelated (not shown). Thus, we assume first-order autoregressive model, inflating the OLS standard errors by computing the lag-1 autocorrelation \(\varphi \) and finding the effective number of data points \(n^* \),

\[
n^* = n \left(\frac{1-\varphi}{1+\varphi} \right), \quad (A3)
\]
where here \(n = 132 \) months of observations over 2005–2015. This effective number of data points is then used for determining the OLS standard error for the regression coefficients,

\[
\hat{\sigma}_{\hat{\beta}_j} = \sqrt{\frac{e^T e}{n^*-k}} (X^T X)^{-1}
\]

(A4)

where \(\hat{\beta}_j \) is the \(j \)th coefficient and \(k = 5 \) is the total number of coefficients being estimated. Similar methods are described by Chambers et al. (2012) and Calafat and Chambers (2013). Other methods are possible for linear estimation in the presence of autocorrelated residuals (e.g., feasible generalized least squares), but we find that—in this context—these methods result in endogenous predictors (specifically, residuals of the fit are significantly correlated with the MEI predictor term), hence inconsistent estimates, and so are not employed.

Appendix B: Evaluation of 90% confidence intervals

All values derived from OLS regression quoted in the main text, shown in Figure 3, and given in Table 1 are 90% confidence intervals. These intervals are determined as follows. First, to account for goodness of fit, we compute the OLS standard errors, adjusting values according to the effective degrees of freedom, as above. Second, to account for uncertainty in the data, we propagate the standard errors on the data based on the OLS estimator and the usual procedures for uncertainty propagation (e.g., Thomson and Emery, 2014),

\[
\hat{\sigma}_j = \delta_Y \sqrt{(M M^T)_{jj}},
\]

(B1)

where \(\delta_Y \) represents the standard error on the altimetry, GRACE, or Argo data as outlined in the text and given in Table 1. We use \(\hat{\sigma}_j \) and \(\delta_j \) to evaluate the total uncertainty \(e_{\hat{\beta}_j} \),

\[
e_{\hat{\beta}_j} = \sqrt{\hat{\sigma}^2_{\hat{\beta}_j} + \delta^2_j}.
\]

(B2)

Using these values for the total errors, the 90% confidence intervals are constructed as,

\[
\hat{\beta}_j - t_{95} \cdot e_{\hat{\beta}_j} \leq \beta_j \leq \hat{\beta}_j + t_{95} \cdot e_{\hat{\beta}_j},
\]

(B3)

where \(\beta_j \) is the true value of the \(j \)th coefficient and \(t_{95} \) is the ninety-fifth percentile of the Student’s \(t \) inverse cumulative distribution given the effective degrees of freedom (Table 1).

Appendix C: Budgets for the annual cycle and linear trend

Here we briefly consider the GMSL budget for the annual cycle and the linear trend. These cases have been discussed before in many previous investigations (e.g., Leuliette, 2015, and references therein), and are discussed here mainly for the sake of completeness. Altimetry gives a GMSL trend over 2005–2015 of \(3.39 \pm 0.55 \) mm yr\(^{-1} \) whereas the sum of GRACE and Argo yields \(3.22 \pm 0.43 \)
mm yr$^{-1}$ (Table 1). The residual between these two values 0.18 ± 0.19 mm yr$^{-1}$ is not statistically distinguishable from zero at the 95% confidence level. We see that GRACE barystatic contributions roughly two-thirds to the total change (2.23 ± 0.44 mm yr$^{-1}$) whereas Argo steric contributes about one-third (0.99 ± 0.16 mm yr$^{-1}$). The general closure of the budget and the relative partitioning between barystatic and steric effects is very similar to other studies for similar periods (e.g., see Leuliette (2015) for an assessment of the observed GMSL budget for 2005–2013).

The amplitude of the GMSL annual cycle from altimetry is very similar to that from the sum of GRACE and Argo (Table 1). Also, we notice that the barystatic and steric annual cycles are roughly in antiphase, which leads to a GMSL annual cycle that is smaller in amplitude than the barystatic annual cycle. This feature has been noted and discussed in numerous previous studies (e.g., Leuliette and Miller, 2009). However, we note that, due to a slight phase difference between GMSL from altimetry and from GRACE and Argo (Table 1), there is actually a statistically significant residual in the annual cycle. While this is not made explicit in previous studies, it is implicit; for example, Leuliette and Miller (2009) show a similar difference in GMSL phase between altimetry and the sum of Argo and GRACE. It is not immediately obvious what is responsible for this discrepancy, and it is beyond our scope to explore the issue in depth. However, we hypothesize that it is due to sampling errors in the observing system, namely the fact that Argo does not sample at high latitudes or, probably more importantly, on shallow continental shelf seas.

Appendix D: Description of Monte Carlo simulation

We evaluate what is the likelihood that the barystatic sea level term contributes more to ENSO-related GMSL fluctuations than the steric sea level term. We make this evaluation probabilistically, performing 100,000 iterations of drawing two values, each one drawn from a separate Student t-distribution. The first distribution is based on the MEI regression coefficient for the GRACE barystatic term, with location parameter equal to the regression coefficient, scale parameter equal to the standard error of the regression coefficient, and using the effective degrees of freedom. A draw from this first distribution is a possible value of the barystatic contribution. Likewise, the second distribution is based on the MEI regression coefficient for the Argo steric term, with draws from this second distribution being possible values for the steric contribution. For each iteration, we assess the fraction, $F = D_1 / (D_1 + D_2)$, where D_1 and D_2 are the draws from the first and second distributions, respectively. Physically, F represents the fractional barystatic contribution to the total GMSL change. The histogram P is derived from the realizations of F. Figure 2 displays the likelihood,

$$L(x) = 1 - \int_{-\infty}^{x} P(x')dx'$$

where $L(x)$ is the probability (i.e., fraction of iterations) that $F > x$. For example, $L(0.6)$ is the likelihood that the barystatic term is responsible for $> 60\%$ of total GMSL change.
Appendix E: Datasets

E1 Satellite altimetry

The AVISO data were downloaded from the AVISO website (Table 2). The data are based on reference missions (TOPEX/Poseidon and Jason series) with inverted barometer correction applied, the seasonal signal retained, and glacial isostatic adjustment applied.

The CSIRO data were downloaded from the CSIRO website (Table 2). The version of the data used here had the inverse barometer and glacial isostatic adjustment corrections applied and the seasonal signals not removed (“jb_uby_srn_gtn_giy”). A 60-day smoothing was used to reduce a spurious 59-day cycle in the data related to alias of the ocean tides.

The Colorado data were downloaded from the Colorado sea level website (Table 2). The data version is version_2016rel2. A 60-day boxcar filter was also applied to the data.

The NOAA data were downloaded from the NOAA website (Table 2). The product used here is based on TOPEX/Poseidon and Jason series data with the seasonal signals retained. A 60-day smoothing was applied to these data and a trend of 0.3 mm yr\(^{-1}\) was added to account for glacial isostatic adjustment effects not accounted for in this product.

E2 Profiling floats

The SIO Argo data were downloaded from the SIO website (Table 2). We used the 2004–2014 climatologies with the provided monthly extensions through February of 2016.

The IPRC gridded data fields were downloaded from the IPRC website (see Table 2).

E3 Gravimetric retrievals

The GRACE data were downloaded from Don P. Chambers’ Dropbox folder (Table 2). Data gaps and missing months in these time series were filled based on cubic interpolation.

E4 Climate indices

MEI values were downloaded from the NOAA ESRL PSD ENSO website (Table 2).
References

Table 1. Results of OLS applied to altimetric GMSL (η), GRACE barystatic sea level (p_b), Argo steric sea level (η_ρ), and linear combinations thereof. Values are given as 90% confidence intervals as described in Appendix B. Note that, while the predictors of the OLS fit include an annual sine and cosine, we present results here transformed into the amplitude and phase of a sine term using standard trigonometric transformations. Note also that n^* is the effective number of data points (evaluated following Eq. A3), whereas δ_Y is the standard error evaluated for the different data as outlined in section 2.

<table>
<thead>
<tr>
<th>Dataset</th>
<th>Source</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Altimetry</td>
<td>CU</td>
<td>http://sealevel.colorado.edu/</td>
</tr>
<tr>
<td>Altimetry</td>
<td>NOAA</td>
<td>http://www.star.nesdis.noaa.gov/sod/lsa/SeaLevelRise/</td>
</tr>
<tr>
<td>Argo</td>
<td>SIO</td>
<td>http://sio-argo.ucsd.edu/RG_Climatology.html</td>
</tr>
<tr>
<td>GRACE</td>
<td>CSR</td>
<td>https://dl.dropboxusercontent.com/u/31563267/ocean_mass_orig.txt</td>
</tr>
<tr>
<td>GRACE</td>
<td>JPL</td>
<td>https://dl.dropboxusercontent.com/u/31563267/ocean_mass_orig.txt</td>
</tr>
<tr>
<td>GRACE</td>
<td>GFZ</td>
<td>https://dl.dropboxusercontent.com/u/31563267/ocean_mass_orig.txt</td>
</tr>
<tr>
<td>MEI</td>
<td>NOAA</td>
<td>http://www.esrl.noaa.gov/psd/enso/</td>
</tr>
</tbody>
</table>

Table 2. Locations and sources of the data used here. Websites accessible as of 2 June 2016.
Figure 1. Monthly time series over 2005–2015 of (a) altimetric GMSL (black) and the MEI (shading), (b) GMSL from altimetry (black) and from GRACE and Argo (blue), (c) GRACE barystatic sea level (green) and the MEI (shading), and (d) Argo steric sea level (orange) and the MEI (shading). The thin dark gray (light gray) curve in (d) is Argo steric sea level based on the SIO (IPRC) gridded dataset. Linear trends and annual cycles have been removed from all time series. The MEI record has been scaled to have variance equal to that of the respective sea level time series.
Figure 2. **Likelihood**. **Thick black curve is the likelihood** that the barystatic contribution to ENSO-related GMSL changes exceeds a certain fraction of the sum of barystatic and steric terms based on Monte Carlo runs, where the steric term is evaluated based on the average of the SIO and IPRC gridded data products. The thin dark gray (light gray) curve is the same likelihood but with the steric term assessed using only the SIO (IPRC) product.

Figure 3. Coefficients of regressions of Argo potential temperature on the MEI (°C per MEI) over 2005–2015 over (a) the global ocean, (b) Pacific, (c) Indian, (d) Atlantic, and (e) Southern (south of 30°S) basins. Solid lines are the regression coefficients and dashed lines mark the 90% confidence interval. Bold lines mark significance at the 95% confidence level (i.e., one-tailed test). Note the different horizontal axis limits between the top and bottom panels. The colored values between the top and bottom panels represent the total ocean heat storage (units of ZJ per MEI; 1 ZJ = 10^{21} J) integrated over 0–2000 m in the different basins given as 90% confidence intervals.
Figure 4. Hypothesized Pacific heat budget during El Niño events. The blue blocks are the ocean surface (0–110 m), main thermocline (120–380 m), and intermediate water (400–2000 m) layers. The red arrows are heat exchanges between the ocean layers or with overlying atmosphere. Black values are either the total ocean heat storage within the layers as given by Argo data or the required heat exchanged between them under the stated assumptions of no transports between ocean basins and no contributions from the deep (>2000 m) ocean. Units are ZJ per unit MEI. (Note that all arrows and signs, shown here for El Niño, would be reversed for La Niña events.)

Figure 5. (a) Spatial pattern of nonseasonal anomalous Argo steric sea level (relative to 2005–2015 with linear trends and annual cycles removed) computed from the SIO gridded dataset over the last six months (July–December) of 2015. (b) As in (a) but computed from the IPRC gridded dataset. (c) Spatial pattern of the difference between the two gridded datasets (i.e., SIO minus IPRC). All panels have units of cm steric sea level.
Figure 6. Nonseasonal anomalies of GMSL (black) and MEI (shading) over 1993–2015.