Journal cover Journal topic
Ocean Science An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 2.289 IF 2.289
  • IF 5-year value: 2.756 IF 5-year
    2.756
  • CiteScore value: 2.76 CiteScore
    2.76
  • SNIP value: 1.050 SNIP 1.050
  • SJR value: 1.554 SJR 1.554
  • IPP value: 2.65 IPP 2.65
  • h5-index value: 30 h5-index 30
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 41 Scimago H
    index 41
Discussion papers
https://doi.org/10.5194/osd-11-2907-2014
© Author(s) 2014. This work is distributed under
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/osd-11-2907-2014
© Author(s) 2014. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 12 Dec 2014

Research article | 12 Dec 2014

Review status
This discussion paper is a preprint. It has been under review for the journal Ocean Science (OS). A final paper in OS is not foreseen.

Global representation of tropical cyclone-induced ocean thermal changes using Argo data – Part 2: Estimating air–sea heat fluxes and ocean heat content changes

L. Cheng1, J. Zhu1, and R. L. Sriver2 L. Cheng et al.
  • 1International Center for Climate and Environment Sciences, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China
  • 2Department of Atmospheric Sciences, University of Illinois, Urbana-Champaign, IL, USA

Abstract. We use Argo temperature data to examine changes in ocean heat content (OHC) and air–sea heat fluxes induced by tropical cyclones (TC)s on a global scale. A footprint technique that analyzes the vertical structure of cross-track thermal responses along all storm tracks during the period 2004–2012 is utilized (see part I). We find that TCs are responsible for 1.87 PW (11.05 W m−2 when averaging over the global ocean basin) of heat transfer annually from the global ocean to the atmosphere during storm passage (0–3 days) on a global scale. Of this total, 1.05 ± 0.20 PW (4.80 ± 0.85 W m−2) is caused by Tropical storms/Tropical depressions (TS/TD) and 0.82 ± 0.21 PW (6.25 ± 1.5 W m−2) is caused by hurricanes. Our findings indicate that ocean heat loss by TCs may be a substantial missing piece of the global ocean heat budget. Net changes in OHC after storm passage is estimated by analyzing the temperature anomalies during wake recovery following storm events (4–20 days after storm passage) relative to pre-storm conditions. Results indicate the global ocean experiences a 0.75 ± 0.25 PW (5.98 ± 2.1W m−2) net heat gain annually for hurricanes. In contrast, under TS/TD conditions, ocean experiences 0.41 ± 0.21 PW (1.90 ± 0.96 W m−2) net ocean heat loss, suggesting the overall oceanic thermal response is particularly sensitive to the intensity of the event. The net ocean heat uptake caused by all storms is 0.34 PW.

L. Cheng et al.
Interactive discussion
Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement
Interactive discussion
Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement
L. Cheng et al.
L. Cheng et al.
Viewed  
Total article views: 721 (including HTML, PDF, and XML)
HTML PDF XML Total BibTeX EndNote
456 239 26 721 29 42
  • HTML: 456
  • PDF: 239
  • XML: 26
  • Total: 721
  • BibTeX: 29
  • EndNote: 42
Views and downloads (calculated since 12 Dec 2014)
Cumulative views and downloads (calculated since 12 Dec 2014)
Cited  
Saved  
No saved metrics found.
Discussed  
No discussed metrics found.
Latest update: 18 Mar 2019
Publications Copernicus
Download
Short summary
1. TCs are responsible for 1.87 PW (11.05 W/m2) of heat transfer annually from the global ocean to the atmosphere during storm passage (0-3 days) on a global scale. Of this total, 1.05±0.20 PW (4.80±0.85 W/m2) is caused by TS/TD and 0.82±0.21 PW (6.25±1.5 W/m2) is caused by hurricanes. 2.The net ocean heat uptake caused by all storms is 0.34 PW (4-20 days mean). Hurricanes induce 0.75±0.25 PW (5.98±2.1 W/m2) net heat gain, and TS/TD leads to 0.41±0.21 PW (1.90±0.96 W/m2) net heat loss.
1. TCs are responsible for 1.87 PW (11.05 W/m2) of heat transfer annually from the global ocean...
Citation