Authors express gratitude to the Referee for a review and useful remarks. We present our responses to each comment of Referee below.

November, 14
Anonymous referee

Referee comments on the manuscript 'Numerical modeling of dynamics of Russian south waters within the framework of operational oceanography tasks' by A.V. Grigoriev et al.

General comments.

The paper is timely, it fits well into the scope of the EU ECOOP project and is aimed at an important issue of operational oceanography of the Black Sea. The authors have developed a nested numerical model where the parent medium resolution (about 5 km) model is a z-coordinate model used operationally by the Marine Hydrophysical Institute in Sevastopol, and the high resolution (1km) insert is based on the terrain-following version of the Princeton Ocean Model. The authors seem to have carried out a substantial amount of work and demonstrated their ability to upload their modelling results routinely onto a dedicated website (http://www.oceanography.ru/index.php/ru/чёрное-море/результаты-расчета-скороститечений).

My main concern is related to the following three issues:

(i) Combination of the Black and Caspian Seas seems to be artificial, the section re the Caspian Sea is too brief and downgrades the quality of the paper;

The modeling of Caspian Sea was provided in the frame of ECOOP. This is why the short description of this work was added to the paper. However we agree with the suggestion of the referee to remove it from the paper in order to put more strength to the description of the Black Sea modeling results.

(ii) Too little information is given of the important building blocks of the nested model,

The basic parameters of the model are listed in Table 1. The description of nesting is presented at the page 1867. Also we could refer to the paper from MHI (submitted to the same issue) that contains the detailed description of the model. However we could expand the explanation of the model setting up if it is required.

(iii) The model validation / quality control is insufficient. I also suggest that the manuscript is completely re-written in terms of English. The paper can be published in Ocean Science after the issues noted in this review have been addressed.

We have translated the paper from Russian to English with the help of Publishing House of the OS. However we will take efforts to improve the language.

The model was validated by comparison with many observational results (see figures below). We could expand the description of inter-comparison by adding these figures and
the discussion on them, if this is necessary.

Contact measurements

86-th cruise RV “Akvanavt”
20-21 July 2005

87-th cruise RV “Akvanavt”
26-27 July 2005

Regional model

Model

z = 100 m
21 July, 00:00 hours

RV “Akvanavt”
20-21 July 2005
Results of modelling are in general physically identical, increasing a spatial permit of processes allows reproduce in calculations the detail of hydrological structure, which do not find displaying in large-scale models. In particular, eddies with horizontal spatial sizes ~15 km.

Model calculations reproduce observed real dynamic structures.

Their spatial position not wholly well complies with observed data.

Quantitative features of calculate parameters have a good correspondence with a measurements.

Increasing a quality of modelling can be reach, in particular, by means of data assimilation. For instance, SST and satellite altimetry.

INTRODUCTION.
Yes, but it was made in such form by the Editorial of the OS.

In the Introduction or a literature review section the authors are usually expected to give some review of previous research and how their own research is seen within a wider context. Such section needs to be added. The author may wish to compare their approach to other modelling studies in the region, e.g.

A required scientific review will be added.

BLACK SEA. P1867,L8. 'Global grid' is probably the same as the basin-wide grid and 'coarse' grid. Clarification is needed.

Yes, it is the same – global and basin grid.

P1867, 1868. Very little information is given on the important parameters of the model. What turbulence closure scheme was used to calculate coefficients of vertical viscosity/diffusivity? Were any sensitivity studies carried out to obtain the optimised parameters of the closure scheme and what are they? Same question about horizontal diffusion for scalars and vectors. How the vertical grid was set up? The authors use only 18 sigma layers which does not seem to be a lot in comparison with 1 km horizontal resolution. How well the CIL was resolved in the vertical (i.e. how many sigma layers covered the depth range of the CIL)? It would be good to show the sigma levels on the cross sections e.g. Fig.7. The continental slope in the NE Black Sea is very steep which poses some problems in calculation of the pressure gradient forces in terrain-following grids. How this issue was addressed? The corresponding section of the MS should be extended to answer these questions.

We agree to expand this section.
The turbulence model with level 2.5 closure, based on the turbulence hypotheses of Rott-Kolmogorov generalized by Mellor and Yamada /6/ for the stratified stream is used for vertical mixing parameterization. For horizontal diffusivity - the scheme of Smolarkevich is used. The models (for the whole basin and for the region) were tested during several years before the start of ECOOP project. The number of vertical layers was limited by computational possibilities (the task was to provide daily the forecasting for 3 days ahead). The CIL was resolved and well expressed not only by regional POM, but by the basin scale z-model. We did not notice any problems with calculation of the pressure gradient forces using the terrain-following grids.

P1867, L7,8. 'Values of parameters in nodes of regional models were calculated first with the use of horizontal linear interpolation of the values in the adjacent nodes of a global grid'. Due to the doming nature of the isohalines/isotherms in the region such method sometimes generate
inversion of density (hydrostatic instability). Please clarify what you dealt with such predicaments.

Theoretically such effect is quite possible but practically we do not observe it.

P1867, L7-11. How the lateral boundary conditions were set at the open boundaries for the velocity vectors? The authors state that ' Total fluxes through the section border in regional and global models strictly coincided'. How was this achieved when the velocities were directed outside of the high-resolution domain? The authors further state (L10) that ' components of baroclinic speeds of currents in regional models were equal to corresponding components of global baroclinic speeds'. At the same time the barotropic velocities were different as it follows from Eq(2), and hence the full velocities were different. How can the fluxes coincide 'strictly'? Clarification is needed.

Baroclinic velocity.

Both normal and tangential components of baroclinic velocity are specified by the coarse basin scale model interpolated fields, but after application of transport constraint to preserve coarse basin scale model transport. So

\[
U_{\text{REM}}^{\text{normal}} = U_{\text{BSM}}^{\text{normal}} \left(\frac{Q_{\text{BSM}}}{Q_{\text{INTERP}}} \right)
\]

\[
U_{\text{REM}}^{\text{tang}} = U_{\text{BSM}}^{\text{tang}}
\]

Here:
REM - regional model;
BSM - basin scale model;
CORR - corrected;
INTERP - interpolated;
Q - is the total mass flux through the lateral liquid wall.

P1867, L12.'... water flowed into the settlement area...'. The authors probably meant '...into the high-resolution area...'.
Yes, of course. It should be corrected.

P1868, L5-7. What meteo-forcing do you use for your regional high-res model? Same as MHI? How many rivers do you take into account and what data (operational, climatic?) do you use for the fresh water influx and temperature? Did you use the same bathymetry as MHI? Please clarify.
Yes, the atmospheric forcing was the same as for MHI model, and the same with bathymetry. The impact of the river flow was considered to be not essential.

P1868, L10. 'Before the year 2009, calculations for the Black Sea were carried out in the test mode for debugging of technology'. Have you made any optimisations for the model parameters during the test mode and if yes then which ones? Are results presented in the paper from the 'test mode 'only or a mixture? If the latter, how different were the models in the 'test' and 'operational' simulations?
The optimizations are listed below.
1) Parametrisation of surface heat flux has been modified.
2) Short wave penetrating radiation has been included to the algorithm;
3) Calculation of boundary condition for the currents has been changed.
In this paper (except one figure) shows the results obtained during the project ECOOP.
P1868, L15 'As seen in Fig. 2, the model reproduces both anticyclonic vortexes (vortices?) located on the shelf-slope zone with a characteristic horizontal scale of ∼100 km (Az1)...'. The shelf in this part of the Black Sea is very shallow (a few km), so that the eddy AZ1 is located OUTSIDE the shelfslope zone. Please correct or explain.

Yes, it is more appropriate to use the term “the slope and deep water zone”.

P1869, L15-18 ;25-28 and Fig 6. The authors have performed only a qualitative comparison of model results and observation and focus on salinity comparison in their discussion. Salinity is a more inertial quantity in this area of the Black Sea as there are no major rivers and the effects of precipitation/evaporation are relatively small, so one could expect that during the short period of simulation (up to 3 days) salinity would not have changed significantly. Temperature, particularly at the surface is much more responsive. As far as I can infer from Fig.6 (despite the axes labels are tiny) the observed SST at st5 was 9.15 degC, whilst the model value was 7.85 degC, i.e.1.3 deg lower. Some clarification should be given why such discrepancy is considered 'adequate' (P 1874, L11).

Salinity field in a region was very variable during the forecasting period. The reason of large deviations of temperature at the surface is indicated at the page 1871, lines 12-14.

P1870, 1871. The model validation is based on qualitative similarity of the eddy patterns, comparison with a single CTD cross section and a comparison with a single map of satellite derived SST, which does not seem to be sufficient to assess the quality of the model. The author state that on the 2 July 2009 the RMS (SST\text{observ}-SST\text{model}) was as high as 1.1 degC. Is it a typical value? What about the bias? Have the authors used any other standard methods (e.g. Taylor diagram) to assess the quality of the model output for any extended period of time?

We agree to expand this part of paper.

P1871, L19-25. The authors suggest potential reasons for the mismatch between observations and the model. However they do not put their results into a wider context. For example, are the results of the nested model significantly (or at all) better that that of the basin-scale model of the MHI interpolated to the location of observations? If yes, how big is improvement?

The reproduction of small Az eddies by the nested model is significantly better than by the basin-scale model.

P1872-1873. The section related to the Caspian Sea is too brief. It should be either significantly extended or removed from the MS.

Yes, we already agreed to remove it.

P1874.CONCLUSIONS. The conclusions are not substantiated by the discussion in the body of the MS. The authors state that proposed modelling technology 'can adequately monitor...'. What is adequately? What kind of error in T/S/V is acceptable and for what purposes?

We are ready to expand this section of paper.

P1874. REFERENCES. Abbreviations have to be explained, e.g. SORBIS.

We are ready to explain them.

FIGURES.

GENERAL. Figures are too small, font is mainly illegible.

We will make required improvements.
Fig 2. does not have labels (co-ordinates) on the main chart. The scale on the SST image and modelled currents are mismatched. What is the red contour on the SST image? Why there are no currents in the area of the domain near the words 'Model (velocity)'?
We will make required improvements.

Fig 4. Resolution of the picture is too low. The website shown in this Fig. has a strange temper. When I clicked on the icon labelled 05.02.2011, it brings upfront the chart dated 11.11.2011. As the paper describes the website in much detail, the website itself should be corrected.
The ECOOP project is finished. The website exists, but it does not always correctly reflect the results.

Fig 5-6. The axes labels are too small to read. Please enlarge.
We will make required improvements.

Fig 7. Please show the computational grid. What is the difference between (b) and (c)?
(b) and (c) are explained in the text (page 1870).

Fig 9, 10- It is impossible to see any writing on the inserts. Please increase the font.
We are ready to make changes.

Fig 10. The main figure and the insert have different colour scales so it is difficult to compare. Please use the same scales.
We will try to accommodate the colors.

Fig 11. Time=0 (nowcasting). Does it mean that the T/S data were obtained by interpolation of the MHI model without any runs inside the high-res domain?
Not at all. The model starts the calculation from 1 day before (notably from “yesterday”). This is called as “nowcasting”.

Fig 12-13. No comparison with observations/other model is presented so it is impossible to judge the quality of results.

MINOR COMMENTS.

English is substandard and needs attention
We have translated the paper from Russian to English with the help of Publishing House of the OS. However we will take efforts to improve the language.

We are thankful to the referee for attention and valuable comments.

Sincerely,
Authors