Upwelling characteristics in the Gulf of Finland (Baltic Sea) as revealed by Ferrybox measurements in 2007–2013

V. Kikas and U. Lips

Marine Systems Institute at Tallinn University of Technology, Akadeemia tee 15a, 12618 Tallinn, Estonia

Received: 7 October 2015 – Accepted: 23 October 2015 – Published: 20 November 2015

Correspondence to: V. Kikas (villu.kikas@msi.ttu.ee)

Published by Copernicus Publications on behalf of the European Geosciences Union.
Abstract

Ferrybox measurements are carried out between Tallinn and Helsinki in the Gulf of Finland (Baltic Sea) in a regular basis since 1997. The system measures autonomously water temperature, salinity, chlorophyll a fluorescence and turbidity and takes water samples for further analyses at a pre-defined time interval. We aimed to show how the Ferrybox technology could be used to study the coastal upwelling events in the Gulf of Finland. Based on the introduced upwelling index and related criterion, 33 coastal upwelling events were identified in May–September 2007–2013. The number of events as well as frequency of their occurrence and intensity, expressed as a sum of daily average temperature deviations in the 20 km wide coastal area, were almost equal near the northern and southern coast. It is shown that the wind impulse needed to generate upwelling events of similar intensity differ between the two coastal areas whereas this difference is related to the average wind forcing in the area. Two types of upwelling events were identified – one characterized by a strong temperature front and the other revealing gradual decrease of temperature from the open to coastal area with maximum temperature deviation close to the shore.

1 Introduction

Unattended monitoring of marine environment using ships of opportunity has been implemented in many regions of the World Ocean (e.g. Paerl et al., 2009; Hardman-Mountford et al., 2008) including the Baltic Sea and the Gulf of Finland (Rantajärvi, 2003). The measurement systems installed on board commercial ferries or other ships are called “Ferryboxes” and they consist of various sensors, devices creating water flow through the sensors and software packages controlling the system and managing the data. The commonly used Ferryboxes measure temperature, salinity and chlorophyll a fluorescence in the sea water pumped through the system from the surface layer along the ship track. First trials of using ships of opportunity for environmental monitoring in
the Gulf of Finland were made by Estonian and Finnish scientists between Tallinn and Helsinki in 1990–1991 (Rantajärvi, 2003). Regular Ferrybox measurements along this route were started in 1997 while the longest data series of Ferrybox measurements (since 1993) is available along the ferry route Helsinki–Travemünde (Petersen, 2014).

The Gulf of Finland (GoF) lies in the northeastern part of the Baltic Sea (Fig. 1). It is an elongated basin with a length of about 400 km and a maximum width of 135 km (Alenius et al., 1998). The long-term residual circulation in the surface layer of the gulf is characterized by a relatively low speed and by a cyclonic pattern. According to the latter, the saltier water of the northern Baltic Proper intrudes into the gulf along the Estonian (southern) coast and the seaward flow of gulf water, which is less saline due to the large freshwater inflow in the eastern end of gulf (the Neva River), occurs along the Finnish (northern) coast. The circulation is more complex at time scales from days to weeks mainly due to the variable wind forcing. A variety of mesoscale processes/features (fronts, eddies, upwelling/downwelling), which significantly affect the biological production, retention and transport, have been observed in the Gulf of Finland (e.g. Talpsepp et al., 1994; Pavelson et al., 1997; Lips et al., 2009).

The vertical stratification in the gulf is characterized by a quasi-permanent halocline at depths of 60–80 m, and a seasonal thermocline, which forms in spring-summer at the depths of 10–20 m (e.g. Liblik and Lips, 2011). While high concentrations of dissolved inorganic nitrogen (DIN) and phosphorus (DIP) are observed in winter, the concentrations of DIN and DIP are usually below the detection limit in summer in the upper mixed layer but still high just below the seasonal thermocline. In general, the most prominent features in the seasonal dynamics of phytoplankton in the Gulf of Finland are the spring bloom in April–May dominated by dinoflagellates/diatoms and the late summer bloom in July (or late June to mid-August) dominated by cyanobacteria (Kononen et al., 1996). However, the variations in bloom intensities and their spatial distributions are very high between the years and within the season that is often related to the physical forcing and especially to the mesoscale processes, including upwelling events (Lips and Lips, 2008; Vahtera et al., 2005).
Dynamics and characteristics of upwelling events have been studied in the Gulf of Finland based on in-situ measurements (e.g. Haapala, 1994), remote sensing (e.g. Uiboupin and Laanemets, 2009) and modelling (e.g. Myrberg and Andrejev, 2003). Most prominent upwelling events that were captured by measurements are an event along the northern coast in July 1999 (Vahtera et al., 2005) and an event along the southern coast in August 2006 (Lips et al., 2009). The following characteristic features of upwelling events in the Gulf of Finland are suggested:

1. the Finnish coastal sea in the north-western GoF is one of the main upwelling areas in the Baltic Sea (Myrberg and Andrejev, 2003) where upwelling frequency in May–September 1990–2009 has been up to 15% (Lehmann et al., 2012); almost the same upwelling frequency is suggested by the latter authors for the central GoF along the Estonian (southern) coast;

2. mean upwelling area detected on the basis of 147 maps during the period of 2000–2009 was 5642 km2 (19% of the GoF surface area) along the northern coast and 3917 km2 (13% of the GoF surface area) along the southern coast (Uiboupin and Laanemets, 2015), while the largest area covered by the upwelling water was identified as 12 140 km2 (data from 2000–2006; Uiboupin and Laanemets, 2009); the authors’ estimate of the mean cross-shore extent of upwelling area was 20–30 km off the northern coast and varied between 7 and 20 km off the southern coast;

3. the intensity of upwelling events depends on the values of cumulative upwelling-favorable wind stress and strength of vertical stratification; Haapala (1994) suggested that at least 60 h long wind event has to exist to create an upwelling event; based on the wind data analysis from 2000–2005 and taking the threshold value for cumulative wind stress of 0.1 N m$^{-2}$ d, on average, about 2 upwelling events should appear off the southern coast and 4 events off the northern coast (Uiboupin and Laanemets, 2009);
4. it is suggested that the difference in topography off the southern and northern coast of the GoF results in differing upwelling dynamics along the opposite coasts – in case of similar wind stress (but in opposite directions) the transport of waters from deeper layers starts earlier and is larger along the southern coast (Väli et al., 2011).

The motivation of the present paper is to show how the Ferrybox technology can be used to study mesoscale processes, especially coastal upwelling events in the Gulf of Finland. We describe the approach, its advantages and limits, and present statistical characteristics of upwelling events on the basis of data collected in 2007–2013. The main aim is to relate the observed variability and dynamics of upwelling events to the atmospheric forcing and reveal the differences in upwelling behaviour in the two (the one opposite to the other) coastal areas.

2 The measurement system and methods

2.1 Ferrybox system

Temperature (T), salinity (S), chlorophyll a fluorescence and turbidity data and water samples for nutrients and phytoplankton chlorophyll a (Chl a), species composition and biomass analyses are collected unattended on passenger ferries, travelling between Tallinn and Helsinki (Fig. 1) since 1997. Due to the internal arrangements at the ferry company Tallink Silja and its predecessors, several ferries were used as the platforms for Ferrybox measurements, which also differ in regard of water intake features. A flow-through system from 4H-Jena, Germany with the water intake attached to the sea chest of the ferry is in use since 2006. The water enters the sea chest through a grating with a total surface area of 0.84 m2 located at about 4 m depth below the waterline. The water flow from the sea chest into the system is forced by the hydrostatic pressure since the Ferrybox is located on the lower deck about 3 m below the waterline. To restrict larger particles to get into the measurement system a mud filter (pore size 1 mm) is
used just after the water intake. Prior to the sensors a debubbler is installed to avoid air bubbles to affect the measurements of conductivity, turbidity and Chl a fluorescence. The flow rate through the sensors is stabilized by an internal pump, which is controlled by a pressure sensor in the system. Water samples are taken by a sampling device (Hach Sigma 900 MAX) whereas the water is pumped from the debubbler into the bottles using an internal pump of the water sampler.

For temperature measurements, a PT100 temperature sensor is used that is installed close to the water intake to diminish the effect of warming of water while flowing through the tubes onboard. The sensor has a measuring range from −2 to +40 °C and accuracy of ±0.1 % of the range, thus 0.04 °C. For salinity measurements a FSI Excell thermostalinograph (temperature and conductivity meter) and for Chl a fluorescence and turbidity measurements a SCUFA submersible fluorometer (Turner Designs) with a flow-through cap is used. The system starts the measurements and data recording when the ferry is away from the harbor more than a control distance of 0.7 nautical miles (controlled by a GPS device in the system) and stops when it is closer than this distance in order to avoid the sediments getting into the system.

The data are recorded during every crossing (twice a day) every 20 s that corresponds to a horizontal resolution of approximately 160 m.

2.2 Quality assurance and pre-processing of data

The sensors have been calibrated at the factory before the installation and if necessary sent for an additional laboratory calibration. Since the system contains two temperature sensors, the performance of them is routinely followed by comparison of data acquired from the sensors. The quality of thermostalinograph data is guaranteed by taking a series of water samples (14–17 samples) and analyzing them using a high-precision salinometer AUTOSAL 2–4 times a year. The analyses have shown, that a correction of 0.08 (units in Practical Salinity Scale; the value has been stable over the years) must be added to the recorded salinity. While the raw salinity is recorded (and presented in Fig. 2) in units according to the Practical salinity Scale 1978, the results on salinity dis-
tribution and variability are given later in this paper in g kg\(^{-1}\) (Sects. 3 and 4). Special care is taken to calibrate the SCUFA fluorometer; however, since we do not use the fluorometer data in this study the used routine is not described here.

The data acquired by the Ferrybox system are recorded with a time step of 20 s and stored in an onboard terminal. In order to synchronize the measurements performed by the sensors having different sampling frequencies and GPS, the acquired data within every 19 s interval are averaged and recorded as measurements at every 20 s. The data are automatically delivered to the on-shore ftp-server once a day when the ferry is in the harbor using a GSM connection. The performance of the system is validated by the control parameters, such as the flow rate and pressure in the system, and the data are checked for unrealistic values against the criteria set for every parameter on the basis of known natural variation of them in the Gulf of Finland.

One of the procedures, which has to be carried out when using the Ferrybox data, is the shifting of data points to the actual positions of the water intake. The problem arises since the position attached to a data record is the position of the ferry at the time of measurement but the water is taken in earlier at a different position. Since various systems of water intake are applied, this procedure is unique for each combination of a Ferrybox and a ferry. As described above, in our design the sea water enters first a relatively large sea chest and the flushing through time of it is unknown. While the water flows through the sea chest and into the tubes and debubbler with a flow rate of 12–15 L min\(^{-1}\), the ferry moves on at an average speed of 16 knots. We solved the problem of position correction taking into account the advantage of having two crossings a day.

Analysis of data from forth and backward journeys allowed us to introduce a rough position correction procedure – the best result is achieved by shifting the measured data points against the GPS time by 3–4 min depending on the ferry and exact intake installation. This relatively long time shift is obviously related to the water exchange in the sea chest. Due to an almost constant cruising speed of the ferry outside the harbor areas, the applied procedure gives acceptable results as it is seen for instance
in Fig. 2. In the shown example, the data points are shifted by 3 min and 20 s. This period is found by seeking for the best correlation between the data from forth and backward journeys. The comparison of data along the ferry line from Tallinn to Helsinki and back from Helsinki to Tallinn obtained on the same day is one of the applied quality assurance procedures – the profiles containing unexplained deviations are marked by a quality flag indicating a possible quality problem.

2.3 Data and calculation methods

Temperature and salinity data collected along the ferry line Tallinn–Helsinki from May to September in 2007–2013 are used for analysis purposes. In 2008, the system on board the passenger ferry “Galaxy” was in use until 13 July and the measurements started again on 13 August when the system was installed on board the ferry “Baltic Princess”. However, due to some technical problems, the regular measurements were successful since 2 September 2008.

A failure of the system occurred late August 2012 and therefore the data are not available from September 2012 (since 29 August). In early 2013, the next ferry (“Silja Europa”) came to this line and the system was moved again causing a break in the measurements until 15 July 2013. The number of crossings with the full data coverage is given in Table 1. One can conclude that among the seven analyzed years (from May to September), four years – 2007, 2009, 2010 and 2011 – were the years with almost full data coverage while most of the data were not available in the second half of July and August 2008, in September 2012 and in May, June and first half of July 2013. Thus, the data from all months from May to September were analyzed at least from six years in 2007–2013.

Collected raw data were preliminarily processed, including shifting of measurements as described in Sect. 2.2, quality checked and stored in the database. This data set was used to draw the maps of temporal variations of horizontal distributions of T and S for all studied years (Fig. 3). In order to assess upwelling intensities the data set was transformed from the matrix with constant time step into the matrix with a constant...
spatial resolution. A step (cell width) of 0.5 km along the south–north oriented line was used. The fixed south–north orientation was applied to eliminate the influence of differences in orientation of the ship track in the southern, central and northern parts of the route (see route configuration in Fig. 1) and of possible deviations from the ordinary route. As a result, the extent of upwelling area is presented below in south–north direction and a coefficient has to be applied to convert these values into the upwelling extent in cross-shore direction (as cosine of the angle between the south–north direction and a perpendicular line to the shore – approximately 20°).

In order to characterize the upwelling intensity, temperature deviations were calculated against the daily average temperature values over the entire ferry route from harbor to harbor. An upwelling index was introduced for the 20 km wide coastal area both off the southern coast (UI\(_S\)) and off the northern coast (UI\(_N\)). The width of 20 km was defined on the basis of the analysis of all available temperature data from Tallinn–Helsinki ferry line in 2007–2013 (see Sect. 3.1 for details). For each crossing, a sum of negative temperature deviations in the 20 km coastal area as a measure of the upwelling intensity in the temperature signal off the southern and northern coast was obtained, respectively:

\[
\text{UI}_S = \sum_{i=1 \ldots 40} |\Delta T_i| \quad \text{and} \quad \text{UI}_N = \sum_{i=101 \ldots 140} |\Delta T_i|,
\]

where \(\Delta T_i\) is the temperature deviation at 0.5 km cell \(i\) from the average temperature of the crossing. A calculated upwelling index value equal to zero or below a certain threshold value that can be defined means that there was no upwelling observed in one or the other coastal area. The cumulative upwelling index (CUI) can be calculated by summing up upwelling index values for certain periods. When summing up the upwelling index values we divided them by 40, which is the number of data cells in the 20 km wide coastal area, to keep the meaning of CUI as the sum of average negative
temperature deviations, having a unit of \({^\circ} \text{C day} \):

\[
CUI_S(n_1 \ldots n_2) = \sum_{j=n_1}^{j=n_2} \left(\frac{1}{40} U_{I_{Sj}} \right) \quad \text{and} \quad CUI_N(n_1 \ldots n_2) = \sum_{j=n_1}^{j=n_2} \left(\frac{1}{40} U_{I_{Nj}} \right),
\]

where \(n_1 \) and \(n_2 \) are the start and the end day number of the selected period, for which the cumulative upwelling index is calculated, and \(U_{I_{Sj}} \) and \(U_{I_{Nj}} \) are the upwelling indexes at day \(j \) off the southern and northern coast, respectively. The daily indexes were obtained by averaging the two upwelling indexes from a single day (from forth and backward journey of the ferry). This approach of the CUI calculation is similar to those used previously in the studies of upwelling events and their influence to the phytoplankton dynamics in the Gulf of Finland (see e.g. Lips and Lips, 2008; Myrberg et al., 2008).

Thus, an upwelling event can be characterized by the cumulative upwelling index whereas the first and the last day of the event can be defined as the start and end of the period when the upwelling index (\(U_{I_N} \) or \(U_{I_S} \)) exceeded a certain threshold value. We have defined this threshold value as 40 \({^\circ} \text{C} \), which corresponds e.g. to a 20 km wide upwelling with an average negative temperature deviation of 1 \({^\circ} \text{C} \) or a 10 km wide upwelling with an average negative temperature deviation of 2 \({^\circ} \text{C} \). This choice is explained in more details when presenting the results in Sect. 3.2. Although the precision of the temperature sensor is obviously better than its accuracy, we estimated the uncertainty of the calculated index values based on the absolute accuracy of PT100. The accuracy of the temperature measurements of 0.04 \({^\circ} \text{C} \) gives a maximum uncertainty of 1.6 \({^\circ} \text{C} \) in the upwelling index estimates (it is 25 times less than the selected threshold) and a maximum uncertainty of 0.4 \({^\circ} \text{C} \) day in the cumulative upwelling index estimates (considering a 10 day upwelling event).

Wind data were obtained from the HIRLAM (High Resolution Limited Area Model) version of the Estonian Meteorological and Hydrological Institute with the spatial resolution of 11 km and time interval of 3 h (Väli, 2011; Männik and Merilain, 2007).
data point close to Kalbådagrund, where also a meteorological weather station is located (Finnish Meteorological Institute), was chosen to represent the wind conditions in the study area. The data from Kalbådagrund weather station or from the closest HIRLAM model point have been also used in the earlier studies describing wind conditions in the Gulf of Finland (Lips et al., 2008; Uiboupin and Laanemets, 2009). According to Keevallik and Soomere (2010) the HIRLAM model matches well with the measured wind speed as well wind directions, whereas to obtain the wind direction at 10 m height the measured wind direction at Kalbådagrund (measured at 32 m) is advised to turn by 20° counter-clockwise.

Wind stress (in N m$^{-2}$) is calculated for the wind component along the axis of the Gulf of Finland, which corresponds to the direction turned by 70° clockwise from the north direction, as:

$$\tau_{70} = C_D \rho_a |U| U_{70},$$

(3)

where U is the wind speed (in m s$^{-1}$) and U_{70} is its component in the along-gulf direction, C_D is the drag coefficient (a value of 1.2 × 10$^{-3}$ was chosen in the present study) and ρ_a is the air density (1.2 kg m$^{-3}$). Accordingly, positive values of the wind stress should initiate across-gulf Ekman transport in the surface layer from north to south and vice versa. The cumulative wind stress (in N m$^{-2}$ day) was calculated based on daily averages of wind stress. If the cumulative wind stress is large enough, upwelling events occur along the northern coast in case of the positive wind stress and along the southern coast in case of the negative wind stress.

3 Results

3.1 General variability and distribution patterns

The course of the surface layer temperature in the Gulf of Finland in the warm season is characterized with temperature about 5°C in the beginning of May, a maximum above
20°C in late July–early August and a drop below 15°C in late September. Within the analyzed years 2007–2013, the surface layer temperature was the highest in summer 2010 (Fig. 3). The period when surface layer temperature exceeded 20°C was the longest in 2010 and 2011, while in the other years the periods with water temperature above 20°C were very short – only a few days. On the background of seasonal course and simultaneous shorter-term increases or decreases of temperature over the whole study transect, the periods with clearly lower temperature off the northern or southern shore are observed. Such situations are related to the coastal upwelling events – their characteristic time scale was several days to 1–2 weeks and they extended towards the open sea by 15–20 km (Fig. 3).

Inter-annual variation of surface layer salinity in 2007–2013 were high with the highest salinity in 2011 and the lowest in 2009. The surface layer salinity exceeded 6.5 g kg⁻¹ for a longer period only in 2011 in the southern half of the study transect (Fig. 3j) and for shorter periods of several days in case of coastal upwelling events off the southern shore (e.g. Fig. 3b and d). Note that in the case of coastal upwelling events seen in the temperature distributions off the northern coast, simultaneous increase in salinity was not well visible. As a rule, the surface layer salinity was higher near the southern coast than that near the northern coast. However, often the lowest salinity was measured in the middle of the transect – it means in the open sea areas of the Gulf of Finland (e.g. Figs. 3f and h). Seasonal course in salinity variation differed between the studied years remarkably. While usually, the lowest surface layer salinity was observed in June–July, in 2008, the salinity was the lowest in May and in 2010 and 2011, it was the lowest in August.

To characterize the spatial distribution and variability of the surface layer temperature and salinity along the study transect, the average deviations from the daily mean value of temperature and salinity as well as their root mean square errors (RMSE) were calculated for each 0.5 km cell. On average, the temperature deviations from the mean value along the transect Tallinn–Helsinki are close to zero (Fig. 4a) – the absolute values of average deviation are six times less than estimated RMSE of temperature for
corresponding cells. However, surface layer temperature has been slightly warmer in the open Gulf of Finland than that in approximately 20 km wide coastal areas (Fig. 4a). This could be related to the coastal upwelling events. For instance, in 2009, when coastal upwelling events were observed off the both coasts (somewhat more intensive events off the northern coast), the average temperature deviations are negative off both coasts (Fig. 4c). In 2010, when upwelling events occurred mostly off the southern coast, the negative values of average temperature deviations were detected only in the southern part of the transect (Fig. 4e).

It is remarkable that, on average, the variability of temperature deviations (expressed as RMSE of temperature deviations from the mean value of the certain crossing) was much higher near the coasts than in the central part of the study transect (Fig. 4a). In the case of upwelling events off the southern coast and their absence off the northern coast (in 2010), this high variability of temperature was concentrated only in the 20 km wide coastal area off the southern shore (Fig. 4e). Since the area of high temperature variability, which mostly could be related to the upwelling activity, extended about 20 km from the shores, we suggested to take temperature values from such areas into account when estimating the intensity of upwelling events.

The average distribution of surface layer salinity along the transect was characterized by higher salinity values in the southern gulf and lower values in the northern gulf (Fig. 4b). The salinity deviation from the transect mean value was positive in the 28 km wide area off the southern coast (with clearly higher salinity in the first 10 km) while it was negative along the rest of the study transect. However, the minimum of the surface layer salinity was observed at about 20 km from the northern shore (or at a distance of 50 km from the starting point of the study transect in the Tallinn Bay) almost in every year (Fig. 4b, d and f). The only exception was the year 2007 when the lowest salinity was observed on average in the cell closest to the northern shore. The low salinity water at the distance of 50 km indicates that, in summer, the outflow of the less saline Gulf of Finland surface waters occurs mostly in the northern part of the open gulf. The spatial differences in variability of the surface layer salinity are not so distinct than in
variability of the surface layer temperature. One can recognize slightly higher variability (RMSE) of the surface layer salinity in the coastal areas and at a distance of 20–30 km from the southern end of the transect – in the southern part of the open gulf.

3.2 Upwelling characteristics

The occurrence and intensity of upwelling events along the both coasts of the Gulf of Finland can be qualitatively identified from the temperature deviation maps presenting temperature deviations from the daily mean value along the transect between Tallinn and Helsinki (Fig. 5). As it seen from the maps, the years 2007 and 2009 had a similar pattern – the upwelling events occurred off the southern coast in the first half of the season and off the northern coast in the second half. In 2008, upwelling events were observed near the southern coast in May and September while in June the upwelling events appeared near the northern coast. The year 2010 was an exceptional year when the upwelling events occurred mostly along the southern coast. It was exceptional also because the sea surface temperature outside the upwelling waters was the highest among the studied summers. A sequence of consecutive upwelling events near the northern and southern coast was observed in 2011. Upwelling events occurred mostly off the northern coast in 2012 and 2013.

We selected a criterion to detect whether an upwelling event occurs or not as the value of upwelling index (UI) exceeding 40°C (in absolute values, while UI is by definition a negative number). This value corresponds to the situation when an average negative temperature deviation of at least −1°C in a 20 km wide coastal area is measured. The upwelling events found using the selected criterion were also the occasions when the maximum negative temperature deviation from the transect mean value was at least −2°C (except one event on 10–17 September 2007 when the maximum deviation was −1.97°C). Furthermore, no other cases with negative temperature deviations exceeding −2°C were detected. Thus, the criterion UI < −40°C gives quite similar results as would yield if using the criterion based on the maximum negative temperature deviation of −2°C.
We identified in May–September 2007–2013 altogether 33 upwelling events, approximately half of them (17) near the northern coast and half (16) near the southern coast (Table 2).

The events lasted from 3 days to 3 weeks (the longest event occurred on 11–31 August 2013). On average five events a year were registered and the maximum number of events (eight) was observed in 2011. Based on available data, the number of days with the upwelling near the northern coast was 150 and near the southern coast 140. As the total number of days with measurements in the present study was 838, the upwelling occurred on 18 and 17 % of days off the northern and southern coast, respectively. The maximum negative temperature deviation from the transect mean value was detected in 2010 near the southern coast when it reached $-7.78 \degree C$ during the event from 17 to 23 August 2010. The largest temperature deviation in the case of upwelling events near the northern coast of $-6.15 \degree C$ was detected during the event from 17 July to 1 August 2013. The average of maximum temperature deviations was larger for the upwelling events near the southern coast than near the northern coast, -4.64 and $-3.60 \degree C$, respectively.

While the maximum temperature deviation characterizes the peak of the upwelling, the introduced cumulative upwelling index takes also into account the extent of the upwelling in space and time. In regard of CUI the largest upwelling events were observed in 2013 – on 15–30 September 2013 off the southern coast (CUI = $-40.2 \degree C$ day) and on 11–31 August 2013 off the northern coast (CUI = $-39.7 \degree C$ day). The upwelling events with the largest temperature deviation in July–August 2010 were relatively short events lasting 7 days and gave respective CUI value as $-15.7 \degree C$ day and $-20.8 \degree C$ day. The average CUI value for 17 upwelling events off the northern coast was $-14.5 \degree C$ day and off the southern coast $-16.2 \degree C$ day. Summing up CUI values for all detected upwelling events gave the total CUI for the events off the northern coast as $-247.0 \degree C$ day and off the southern coast $-258.4 \degree C$ day. We also found the total sum of upwelling indexes (divided by 40) off the both coasts regardless whether the set upwelling criterion was met or not.
The resulting total CUI for all measurement days in 2007–2013 was \(-405.3^\circ C\) day for the northern coastal area and \(-356.6^\circ C\) day for the southern coastal area. Thus, the negative temperature deviations from the transect mean are more common for the northern coastal sea area while the upwelling events were more intense in the southern coastal sea area. This feature is also well seen in Fig. 6 where e.g. for 2007 relatively low values of \(U_{in}\) were found in most of the days near the northern coast but only three upwelling events were revealed according to the criterion set in the present study.

Seasonal variation of the frequency of occurrence and intensity of upwelling events was revealed. The highest number of events was observed in July – 10 events, 5 off the northern coast and 5 off the southern coast, and the lowest in May – 4 events. The sum of CUI values of all events in July and August were \(-185.3^\circ C\) day and \(-187.9^\circ C\) day, respectively, while it was only \(-28.6^\circ C\) day in May. In June and September, the CUI of all events had intermediate magnitude, \(-107.5^\circ C\) day and \(-137.0^\circ C\) day, respectively. Obviously, the revealed seasonal course was partly related to the temperature difference between the surface layer and the cold layer beneath the seasonal thermocline, which has its maximum in the Gulf of Finland in July–August (Liblik and Lips, 2011).

3.3 Upwelling characteristics in relation to wind forcing

The occurrence of coastal upwelling events in the Gulf of Finland can be related quite well to the variations of the along-gulf wind stress (Fig. 6). The upwelling events appear after a certain favorable wind pulses with long enough duration and magnitude. In the case of upwelling events off the northern coast the positive along-gulf wind stress was usually observed a few days before the event and in the case of upwelling events off the southern coast the wind stress was negative for a few days (Fig. 6).

The estimated cumulative wind stress for the detected upwelling events varied between 0.31 and 1.37 N m\(^{-2}\) day for westerly winds and between \(-0.09\) and \(-1.08\) N m\(^{-2}\) day for easterly winds (Table 2). The cumulative wind stress associated with each upwelling event was calculated based on daily average wind stress values by summing them up from the first day with favorable wind stress (within a period of 1 week be-
fore the event) to the last day with favorable wind stress before the end of the event. If within the favorable wind stress series only one day with opposite wind stress appeared in a sequence then the calculation period was not broken. The average value of the cumulative wind stress for an upwelling event off the northern coast was 0.71 Nm\(^{-2}\) day and off the southern coast −0.44 Nm\(^{-2}\) day. It suggests that in order to produce a coastal upwelling event of an equal magnitude the required favorable along-gulf wind stress has to be larger for the upwelling events off the northern coast than for the events off the southern coast. This conclusion is drawn by taking into account the above result that the average upwelling intensity (estimated as CUI) was similar for the both coastal areas with slightly higher values of CUI for the upwelling events off the southern coast.

The average along-gulf wind stress for the entire study period from May to September in 2007–2013 was 0.016 Nm\(^{-2}\) (based on wind data with the time step of 3 h). The seasonal averages had positive values in all studied years indicating that the westerly-south-westerly winds prevailed in the region. The average values of wind stress varied between 0.001 Nm\(^{-2}\) in 2010 and 0.029 Nm\(^{-2}\) – the value, which was obtained for three years – 2007, 2009 and 2012. The year 2010 was the year when in May–September five upwelling events occurred off the southern coast and only one event off the northern coast. However, the average along-gulf wind stress was close to zero indicating that the wind from both directions had almost similar occurrence. It is interesting to mention that the wind stress averaged over all observed upwelling events in 2007–2013 was 0.015 Nm\(^{-2}\). The latter estimate was obtained based on the mean length of upwelling events of 8.8 days and mean cumulative wind stress values of 0.71 and −0.44 Nm\(^{-2}\) day off the northern and southern coasts, respectively. Thus, the average values of wind stress during the entire study period and during the occurred upwelling events were very close to each other. It can be concluded that the difference between the wind impulses needed for the generation of coastal upwelling events near the opposite coasts with a comparable intensity in regard of the introduced cumulative upwelling index is related to the average wind stress value in the region.
Usually the upwelling events occurred one or a few days after the start of the favorable wind pulse and the maximum of upwelling intensity (upwelling index) was reached one or a few days after the maximum wind stress (Fig. 6). Daily measurements are too scarce yet to describe the temporal evolution of upwelling events in detail since the inertial period in the Gulf of Finland is approximately 14 h (about half a day). Instead, we made an attempt to reveal characteristic spatial temperature and salinity distributions in the surface layer from coast to coast at times of the maximum intensity of upwelling events. Surprisingly, the results did not differ significantly between the northern and southern coast – two characteristic shapes of upwelling events in the temperature distribution were identified for both coastal areas.

The most intense upwelling events were characterized by a sharp and very intense temperature front between the upwelling waters and the rest of the transect (see Fig. 7 the yellow and orange curves). Typical for such events were an almost uniform temperature outside the upwelling area and the temperature minimum (maximum temperature deviation) close to the upwelling front. The other distribution pattern (blue curves in Fig. 7) exposed a gradual decrease of temperature towards the upwelling waters. Typical for the latter events were the irregularities in temperature distribution with characteristic scale of a few kilometers and the temperature minimum (maximum temperature deviation) in the cell closest to the shore. In some cases, e.g. the event near the northern coast with maximum intensity on 18 August 2013 (see light blue curve in Fig. 7 upper left panel), the observed temperature deviations were as large as during the upwelling events with pronounced temperature front. There was also a third type of temperature distribution when the upwelling waters were not attached to the shore (see red curve in Fig. 7 upper left panel) at least according to the measurements along the ferry route. All these types of upwelling events are well recognized on the maps of temporal changes of temperature and temperature deviation along the ferry route Tallinn–Helsinki (Figs. 3 and 5).

The spatial distribution of salinity in the surface layer from coast to coast drastically differed between the upwelling events near the northern coast and the events near
the southern coast (Fig. 7 right panels). In the latter case, both the salinity difference across the gulf and the spatial variability at scales of a few to ten kilometers were much larger than in the former case. It is also interesting that in the case of southern upwelling events, the salinity minimum along the transect can be situated very close to the upwelling front (e.g. on 28 July 2010) or near the northern coast (e.g. 8 July 2011). Although such diverse patterns are partly related to the history of water movements in the gulf, the salinity minimum (at least local minimum) close to the upwelling front obviously is caused by the westward current jet along the front. The salinity distribution across the gulf associated with the northern upwelling events is very uniform with some variability at scales of a few to ten kilometers, which have the amplitude several times less than similar variability in spatial salinity distribution associated with the southern upwelling events.

4 Discussion and conclusions

Several studies have shown how the Ferrybox measurements are successfully used for different applications, such as for monitoring of coastal waters in combination with remote sensing (Petersen et al., 2008), estimating carbon fluxes and primary productivity (Schneider et al., 2014) and detecting cyanobacterial blooms (Seppälä et al., 2007). However, not enough attention is paid to the systems itself especially to the question how the results are affected by different technical solutions used in the systems (like water intake depth and construction, piping etc). Furthermore, the particularities of geographical location as well as the ferry route and schedule often determine the most suitable applications and requirements for the data treatment. A good example of taking advantage on the geographical location and ferry route (schedule) is demonstrated by Buijsman and Ridderinkhof (2007) who estimated the water and suspended matter exchange between the Wadden Sea and the North Sea using data collected along the ferry route Den Helder–Texel.
The ferry route between Tallinn and Helsinki across the elongated Gulf of Finland and the schedule consisting of two cruises a day and a short 1.5 h stay in Helsinki makes it possible to introduce a rough procedure for correction of coordinates of measurement points and an additional quality check routine for the collected data. The correlation between the data from the two crossings same day should be high enough; otherwise the data can be marked as suspicious. We found that the highest correlation between the two data sets is achieved when the data points are shifted by 3–4 min depending on the intake installation and the ferry. We suggest that in all Ferrybox systems such coordinate correction procedure should be used. This analysis also demonstrates the confidence of the applied Ferrybox system even though the water is taken in through a relatively large sea chest. Furthermore, the ferry route across the relatively narrow gulf from coast to coast is very convenient to collect data on the offshore extension and intensity of costal upwelling events.

Various methods have been applied to reveal characteristic features of coastal upwelling events in the Baltic Sea (including the Gulf of Finland) based on data mainly from remote sensing and numerical models. Certain temperature isoline as the border of upwelling area was used by Uiboupin and Laanemets (2009) and a temperature deviation (2°C) from the mean temperature along zonal transects was used by Lehmann et al. (2012). The latter method is similar to the approach applied in the present study, but we argue that the analysis of temperature deviations along meridional transects is more appropriate in the Gulf of Finland. This conclusion is justified by the fact that, on average, the north–south temperature gradient is negligible in the gulf (see Fig. 4a) and when using meridional transects the results are not biased by the different temporal dynamics of surface layer temperature in the open Baltic Proper and in the relatively narrow Gulf of Finland. For instance, the seasonal warming and cooling are faster in the gulf than in the open Baltic.

Nevertheless, it is interesting that our results on upwelling frequencies of about 17–18% near the northern and southern coast are very close to the results of Lehmann et al. (2012) if their results based on remote sensing data were considered. They con-
cluded that upwelling events are present more than 15% of time near the northern coast and about 15% of time near the southern coast. At the same time, the estimates of corresponding upwelling frequencies based on numerical experiments differ. Usually the northern coastal area is suggested as the main upwelling area in the Gulf of Finland with the upwelling occurrence up to 30% of time (Lehmann et al., 2012; Myrberg and Andrejev, 2003) while near the southern coast downwelling should prevail (e.g. Myrberg and Andrejev, 2003). It shows that the models, in regard their resolution and parameterization of sub-grid processes should be improved.

Analysis of wind data has also suggested that the coastal upwelling events should occur more often off the northern coast of the Gulf of Finland than off the southern coast (Lehmann et al., 2012; Uiboupin and Laanemets, 2009). The data set consisting of 838 days of measurements from coast to coast used in the present analysis has revealed that, on average, the frequency of upwelling events and their intensity is similar near the northern and southern coast of the gulf although the wind data from the same period suggest prevalence of upwelling events off the northern coast. Partly, this outcome can be explained by the higher position of the thermocline, steeper slope and greater depths in the southern part of the gulf as suggested by some earlier studies (e.g. Väli et al., 2011; Laanemets et al., 2009). However, one could suggest that the thermohaline structure of the Gulf of Finland is adapted to the general prevalence of westerly-south-westerly winds. Thus, the wind impulse needed for the generation of a coastal upwelling event of similar intensity near the southern coast can have smaller magnitude. We suggest that rather the deviation from the average wind forcing than the absolute value of it should be considered. This suggestion is supported by the comparison of average upwelling intensities expressed as cumulative upwelling index values and cumulative wind stress values for the all upwelling events recorded in 2007–2013 near the opposite costs of the gulf. Similar conclusion was made by Liblik and Lips (2015) on the basis of data analysis from 35 cross-gulf CTD surveys conducted in 2006–2013.
As a side product we also described the average cross-gulf distributions of temperature and salinity deviations from the transect mean value. On average, the surface layer temperature does not have any horizontal gradient while the surface layer salinity is higher in the southern part than in the northern part of the gulf. The result that the surface water with the lowest salinity is on average at about 20 km from the northern coast supports the suggested general circulation scheme in the Gulf of Finland (e.g. Andrejev et al., 2004). At the same time, if the wind forcing favorable for upwelling events near the southern coast prevails (as it was observed in summer 2010) the low salinity water appears in the southern part of the open gulf, close to the upwelling front. This phenomenon was also observed in August 2006 when a very intense upwelling event developed near the Estonian coast (Lips et al., 2009) and has been noted by Liblik and Lips (2015) when analyzing data of CTD surveys from 2006–2013.

The most intense upwelling events in regard of temperature deviations were observed near the southern coast as it was also found by Uiboupin and Laanemets (2009, 2015). However, we did not identify clear differences in the temperature distribution patterns between the upwelling events off the two coasts. Instead, near the both coasts the classical distribution with a sharp temperature front as well as the distribution characterized with a gradual decrease of temperature towards the coast have been observed. We analyzed the wind data to find out whether the forcing would be the reason of such different outcomes. Since often the wind conditions were quite variable before the upwelling events, it was not possible to suggest any quantitative criterion for wind forcing generating one or the other type of temperature distribution.

However, the wind speed was usually higher before the upwelling events with the sharp temperature front. For instance, the wind roses for a weekly period before the upwelling event shown in Fig. 8 are very similar except the wind speed distribution – the period before the upwelling event with sharp temperature front observed on 19 August 2010 has a large share of wind speed in the range of 10–15 m s\(^{-1}\). It allows us to suggest that the observed variability in spatial temperature distribution at the scales of a few kilometers could be related to sub-mesoscale motions, which are made visi-
ble if due to the slightly lower forcing the mesoscale dynamics do not fully dominate. These suggestions have to be studied further in the future by combining Ferrybox data and data on vertical structure of the water column and its temporal evolution since the upwelling development is very much dependent on the vertical structure of the water column before the event.

In conclusion, we showed that Ferrybox data from the Tallinn–Helsinki ferry route could be successfully employed to describe the characteristics of coastal upwelling events in the Gulf of Finland. We took advantage of the geographical location of the ferry route across the relatively narrow gulf and the schedule consisting of two crossings a day to control the quality of the data and introduce the daily upwelling index and the cumulative upwelling index. In total, 33 coastal upwelling events were identified in May–September 2007–2013. It is shown that the upwelling occurrences on 18 % of days near the northern coast and 17 % of days near the southern coast as well as intensities of upwelling events are similar near the northern and southern coast. The most intense events occur in July–August, most probably because of the warmest surface layer (strongest thermocline) during those months. It is shown that the wind impulse needed to generate upwelling events of similar intensity differ between the two coastal areas. We suggest that the thermohaline structure of the Gulf of Finland is adapted to the prevailing forcing and rather the deviation from the average wind forcing than the absolute value of it should be considered when comparing the wind impulses related to the upwelling generation. Two types of upwelling events were identified – one characterized by a strong temperature (upwelling) front and the other revealing gradual decrease of temperature from open to coastal area with maximum temperature deviation very close to the shore. We suggest that the latter case is a result of slightly lower wind speeds, which are not able to generate strong enough Ekman drift in the entire surface layer down to the seasonal thermocline. This conclusion is supported by the presence of spatial variations in temperature with scales of a few kilometers, which could be signs of sub-mesoscale motions associated with the development of such upwelling events.
Acknowledgements. We thank our colleagues, especially Inga Lips and Fred Buschmann, for their help in maintaining the Ferrybox system, and Taavi Liblik for his suggestions in regard of data processing. This work was supported by institutional research funding IUT19-6 of the Estonian Ministry of Education and Research and by EU Regional Development Foundation, Environmental Conservation and Environmental Technology R&D Programme project VeeOBS (3.2.0802.11-0043).

References

Table 1. Periods of measurements along the ferry route Tallinn–Helsinki in 2007–2013, number of days with measurements and number of days with upwelling events off the northern coast (N) and off the southern coast (S).

<table>
<thead>
<tr>
<th>Year</th>
<th>Ferry</th>
<th>Period</th>
<th>Number of days with data</th>
<th>Number of days with upwelling</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>N</td>
</tr>
<tr>
<td>2007</td>
<td>Galaxy</td>
<td>1 May–30 Sep</td>
<td>141</td>
<td>26</td>
</tr>
<tr>
<td>2008</td>
<td>Galaxy</td>
<td>1 May–13 Jul</td>
<td>90</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>Baltic Princess</td>
<td>13 Aug–30 Sep</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2009</td>
<td>Baltic Princess</td>
<td>1 May–30 Sep</td>
<td>145</td>
<td>33</td>
</tr>
<tr>
<td>2010</td>
<td>Baltic Princess</td>
<td>1 May–30 Sep</td>
<td>140</td>
<td>5</td>
</tr>
<tr>
<td>2011</td>
<td>Baltic Princess</td>
<td>1 May–30 Sep</td>
<td>135</td>
<td>19</td>
</tr>
<tr>
<td>2012</td>
<td>Baltic Princess</td>
<td>1 May–28 Aug</td>
<td>113</td>
<td>22</td>
</tr>
<tr>
<td>2013</td>
<td>Silja Europa</td>
<td>15 Jul–30 Sep</td>
<td>74</td>
<td>37</td>
</tr>
</tbody>
</table>
Table 2. Characteristics of detected upwelling events; dates, coastal area (N – off northern coast; S – off southern coast), maximum temperature deviation from the transect mean value, cumulative upwelling index calculated for each event and cumulative along-gulf wind stress calculated for upwelling favourable winds before and during the upwelling event.

<table>
<thead>
<tr>
<th>No</th>
<th>Dates</th>
<th>Coast</th>
<th>Maximum temperature deviation (°C)</th>
<th>Cumulative upwelling intensity (°C day)</th>
<th>Cumulative wind stress (Nm² day)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3–14 Jun 2007</td>
<td>S</td>
<td>-4.12</td>
<td>-19.8</td>
<td>-0.49</td>
</tr>
<tr>
<td>2</td>
<td>8–16 Jul 2007</td>
<td>S</td>
<td>-3.02</td>
<td>-12.6</td>
<td>-0.34</td>
</tr>
<tr>
<td>3</td>
<td>21–27 Jul 2007</td>
<td>N</td>
<td>-4.02</td>
<td>-13.9</td>
<td>0.93</td>
</tr>
<tr>
<td>4</td>
<td>29 Jul–8 Aug 2007</td>
<td>N</td>
<td>-3.64</td>
<td>-16.5</td>
<td>0.38</td>
</tr>
<tr>
<td>5</td>
<td>10–17 Sep 2007¹</td>
<td>N</td>
<td>-1.97</td>
<td>-7.5</td>
<td>0.75</td>
</tr>
<tr>
<td>6</td>
<td>26–28 May 2008²</td>
<td>S</td>
<td>-2.52</td>
<td>-3.9</td>
<td>-0.20</td>
</tr>
<tr>
<td>7</td>
<td>11–15 Jun 2008</td>
<td>N</td>
<td>-2.73</td>
<td>-7.2</td>
<td>0.62</td>
</tr>
<tr>
<td>8</td>
<td>27–29 Jun 2008</td>
<td>N</td>
<td>-2.27</td>
<td>-6.2</td>
<td>0.53</td>
</tr>
<tr>
<td>9</td>
<td>10–17 Sep 2008</td>
<td>S</td>
<td>-5.42</td>
<td>-23.0</td>
<td>-1.08</td>
</tr>
<tr>
<td>10</td>
<td>9–16 Jun 2009</td>
<td>S</td>
<td>-4.77</td>
<td>-14.8</td>
<td>-0.27</td>
</tr>
<tr>
<td>11</td>
<td>24 Jun–14 Jul 2009</td>
<td>S</td>
<td>-5.78</td>
<td>-36.1</td>
<td>-0.42</td>
</tr>
<tr>
<td>12</td>
<td>16–22 Aug 2009</td>
<td>N</td>
<td>-3.20</td>
<td>-10.7</td>
<td>0.54</td>
</tr>
<tr>
<td>13</td>
<td>28 Aug–9 Sep 2009</td>
<td>N</td>
<td>-2.74</td>
<td>-14.1</td>
<td>0.56</td>
</tr>
<tr>
<td>14</td>
<td>17–30 Sep 2009³</td>
<td>N</td>
<td>-3.09</td>
<td>-19.3</td>
<td>1.28</td>
</tr>
<tr>
<td>15</td>
<td>20–24 May 2010</td>
<td>S</td>
<td>-2.21</td>
<td>-5.1</td>
<td>-0.56</td>
</tr>
<tr>
<td>16</td>
<td>12–13 Jun 2010⁴</td>
<td>S</td>
<td>-2.60</td>
<td>-2.3</td>
<td>-0.19</td>
</tr>
<tr>
<td>17</td>
<td>20–24 Jul 2010</td>
<td>N</td>
<td>-4.70</td>
<td>-9.3</td>
<td>0.31</td>
</tr>
<tr>
<td>18</td>
<td>26 Jul–1 Aug 2010</td>
<td>S</td>
<td>-6.19</td>
<td>-15.7</td>
<td>-0.34</td>
</tr>
<tr>
<td>19</td>
<td>17–23 Aug 2010</td>
<td>S</td>
<td>-7.78</td>
<td>-20.8</td>
<td>-0.66</td>
</tr>
<tr>
<td>20</td>
<td>2–12 Sep 2010</td>
<td>S</td>
<td>-5.27</td>
<td>-16.0</td>
<td>-0.25</td>
</tr>
<tr>
<td>21</td>
<td>4–12 May 2011⁵</td>
<td>S</td>
<td>-2.22</td>
<td>-9.3</td>
<td>-0.09</td>
</tr>
<tr>
<td>22</td>
<td>31 May–8 Jun 2011</td>
<td>N</td>
<td>-3.23</td>
<td>-10.3</td>
<td>0.60</td>
</tr>
<tr>
<td>23</td>
<td>11–15 Jun 2011</td>
<td>S</td>
<td>-3.12</td>
<td>-6.0</td>
<td>-0.38</td>
</tr>
<tr>
<td>24</td>
<td>24–27 Jun 2011</td>
<td>N</td>
<td>-2.40</td>
<td>-4.8</td>
<td>0.41</td>
</tr>
<tr>
<td>25</td>
<td>5–10 Jul 2011</td>
<td>S</td>
<td>-5.05</td>
<td>-10.6</td>
<td>-0.38</td>
</tr>
<tr>
<td>26</td>
<td>20 Jul–7 Aug 2011</td>
<td>S</td>
<td>-4.89</td>
<td>-22.2</td>
<td>-0.62</td>
</tr>
<tr>
<td>27</td>
<td>14 Sep 2011⁶</td>
<td>N</td>
<td>-4.90</td>
<td>-3.1</td>
<td>0.47</td>
</tr>
<tr>
<td>28</td>
<td>26–30 Sep 2011⁷</td>
<td>N</td>
<td>-3.27</td>
<td>-13.8</td>
<td>1.26</td>
</tr>
<tr>
<td>29</td>
<td>18–27 Jul 2012⁸</td>
<td>N</td>
<td>-4.55</td>
<td>-22.4</td>
<td>1.37</td>
</tr>
<tr>
<td>30</td>
<td>2–13 Aug 2012</td>
<td>N</td>
<td>-4.17</td>
<td>-22.2</td>
<td>0.58</td>
</tr>
<tr>
<td>31</td>
<td>17–1 Aug 2013⁹</td>
<td>N</td>
<td>-6.15</td>
<td>-26.0</td>
<td>0.63</td>
</tr>
<tr>
<td>32</td>
<td>11–31 Aug 2013</td>
<td>N</td>
<td>-5.03</td>
<td>-39.7</td>
<td>0.92</td>
</tr>
<tr>
<td>33</td>
<td>15–30 Sep 2013</td>
<td>S</td>
<td>-7.34</td>
<td>-40.2</td>
<td>-0.71</td>
</tr>
</tbody>
</table>

¹ Temperature deviation was less than -2°C during the event on 10–17 September 2007.
² Data absent before 26 May 2008 for more than 1 day.
³ Data analysed until 30 September 2009 (upwelling event did further).
⁴ Data absent before 12 June 2010 for more than 1 day.
⁵ Early spring with possible contribution of difference in surface water warming.
⁶ No data available after 14 September 2011.
⁷ No data available before 26 September 2011, wind data missing on 24–26 September 2011.
⁸ Wind data on 14–15 July 2012 not available.
⁹ Ferrybox data on 20–21 July 2013 not available.
Figure 1. Map of the Baltic Sea and the study area with the Ferrybox transect and Kalbada-grund meteorological station.
Figure 2. Measured salinity distribution along the ferry route Tallinn–Helsinki from the forth and backward journey on 27 July 2010. Raw data are presented in the left panel and the processed data in the right panel where the shifting of data points by 3 min and 20 s was applied; x axis shows the distance from the Tallinn Bay (latitude 59.48° N) in km along the meridional transect.
Figure 3. Temporal changes of temperature (in °C) and salinity (in g kg$^{-1}$) distributions between Tallinn and Helsinki from 1 May to 30 September in 2007 (a, b), 2008 (c, d), 2009 (e, f), 2010 (g, h), 2011 (i, j), 2012 (k, l) and 2013 (m, n); y axis shows the distance from the Tallinn Bay (latitude 59.48° N) in km along the meridional transect.
Figure 4. Distributions of temperature (in °C) and salinity (in g kg⁻¹) deviations from the daily transect mean value along the ferry route Tallinn–Helsinki for all measurements in May–September 2007–2013 (a, b), in 2009 (c, d) and in 2010 (e, f). Mean values on each 0.5 km cell (solid curves) and plus/minus RMSE (dashed curves) are shown; x axis shows the distance from the Tallinn Bay (latitude 59.48° N) in km along the meridional transect.
Figure 5. Temporal changes of spatial distributions of temperature deviations (in °C) from the daily transect mean value between Tallinn and Helsinki from 1 May to 30 September in 2007 (a), 2008 (b), 2009 (c), 2010 (e), 2011 (f), 2012 (g) and 2013 (h); y axis shows the distance from the Tallinn Bay (latitude 59.48° N) in km along the meridional transect.
Figure 6. Temporal changes of upwelling index off the northern coast (upper columns; °C) and off the southern coast (lower columns, °C) and along-gulf wind stress (black curve in the middle; N m⁻²) in May–September 2007 (a), 2008 (b), 2009 (c), 2010 (d), 2011 (e), 2012 (f) and 2013 (g).
Figure 7. Characteristic distributions of temperature and salinity along the ferry route Tallinn–Helsinki with coastal upwelling events off the northern coast (a, b) and off the southern coast (c, d); x axis shows the distance from the Tallinn Bay (latitude 59.48° N) in km along the meridional transect.
Figure 8. Wind roses based on the wind data from a weekly period before the peak of upwelling events off the Estonian coast on 19 August 2010 and 8 July 2011.