Dear Topic Editor and Reviewer,

We thank both reviewers for so many very helpful comments and appreciate for constructive feedback on the paper, which has helped to improve the manuscript. All their comments have been addressed and changes have been included in the revised version of the manuscript (see below).

Because some of the comments overlap, we would like to start with responding to the two most important topics rose in both reviews: the purpose of the paper and the toolset used.

The purpose of the paper is to constrain the uncertainty resulting from the choice of the gas transfer velocity (k) parameterization in the case of the North Atlantic. This is a region best covered with measurements and one with stronger with winds than average over the world ocean. We started the study convinced the relative uncertainty will be larger than elsewhere. However it turned out it is smaller. This is a previously unpublished finding, important not only for the ocean carbon budget but especially to the gas transfer velocity community. The North Atlantic is a place where multiple experiments aiming at containing the k parameterization were performed. Knowing (thanks to our results) that typical North Atlantic winds are the environment least suited for choosing between parameterizations of different wind speed power should be taken into account when planning future experiments of this kind. The feedback we had presenting early results at several meetings (EGU and SOLAS conferences, a SOCAT workshop and a grant meeting involving most of the key European researchers in the field). The feedback was very encouraging. It is the feedback which made us include some of the text the reviewers had comments on (like the Arctic seasonality which was treated by us as a curiosity until we heard feedback at the PICO session at EGU). The discussion we had at the meetings, in one case so much we thanked its author with a citation (see also below). Also the manuscript revision showed to us that the gap in literature (lack of papers which show comparisons of resulting fluxes for multiple parameterizations, especially the recent ones) makes the manuscript even more relevant.

The other subject raised in many comments is the FluxEngine toolset. It has been developed by researchers we cooperate with but during a previous project we were not a part of. A paper describing the toolset has been recently published in peer reviewed literature (Shutler et al. 2016, doi:10.1175/JTECH-D-14-00204.1, available also free of charge on ResearchGate). The manuscript has been available to us when we were working on this study but otherwise we worked as end-users. Therefore we reply (below) to questions about FluxEngine according to our best knowledge. However, because we have not yet seen the actual source code (it will be open sourced in near future), we know only as much as stated in the documentation (online in the tool and in the paper). In fact, the decision not to bombard the toolset authors with email questions was one of the additional aims of the study, the first one performed by persons other than its authors. We wanted to check whether the toolset is “user ready”. We have to add that it did work and therefore we plan
to use FluxEngine in our next projects, including ones involving fluxes that are not yet included (this should be easier after it becomes open sourced).

Below is the detailed response with the list of change which we made in our manuscript:

Comments from referee#1:

Major comments:
(a) Many of the mentioned gas transfer formulations have been developed for different wind products (e.g. NCEP, CCMP), whereas the authors only use one wind product. There are some major differences between wind products. I am not convinced that, if you would consider using a certain transfer formulations in combination with the wind product it was initially calculated for, that you would still get the same difference in the results. I believe this aspect has to be thoroughly discussed.

A: We used only one wind product, an Altimeter Global Monthly Wind Field on a 1°x1° geographical grid from GlobWave L2P because at the time it was the only one available in the FluxEngine toolset (actually one could choose instead ASCAT Global Monthly Wind Field but... it was not yet ready). However we do not think it is a major problem because the point of the study was to constrain uncertainty caused by the choice of the gas transfer velocity parameterization. We did not want to repeat the analysis done within the same ESA project and presented in two submitted papers (Woolf et al., 2015a and Woolf at al., 2015b) which focused on other sources of uncertainty (the wind field is one of them).

(b) The authors mention the use of both Takahashi and SOCAT climatology. While the Takahashi et al 2009 climatology fills data gaps using an advection based algorithm, the SOCAT climatology to the extent of my knowledge does not use any gap filling methods at all. The authors report a difference between the climatologies of 8% (NA) and 19% (Arctic), whereas it is not clear if this number truly stems from the difference in the climatologies or simply the difference between gap-filled and not gap-filled estimate.

A: In both cases we used the FluxEngine toolset which has its own tools for interpolation. They were used for both the datasets. The details are given in the Appendix to Shutler et al., 2016 (available online). This fact has been added in the revised text. The detailed changes are listed below in the comment asking about FluxEngine.

(c) I am struggling a bit to find the importance of this work – i.e. what do you add to our scientific understanding of the topic that has not been known before. It is well known that there are differences in the formulations, but if the intention of this paper is to quantify this difference, then I believe you need to quantify point (a) above. Furthermore, many of the gas transfer formulations are developed using data collected over a somewhat narrow wind range (mainly between 5-12m/s), which explains large differences at the edge or outside the sampled wind range. This aspect also needs to be discussed.
A: The fact that some parameterizations were created using only low winds makes it, in our opinion, even more important to compare the results of their usage overseas with high winds, such as the North Atlantic. We hope the reviewer agrees that it makes it even more surprising (and publishable) that the differences in the net fluxes are smaller in such a basin than globally. We are therefore grateful for the remark. We added the following text, in the Discussion section, when mentioning the result.

Page 2600 line 1: This is even more surprising if one realizes that, at least some of the older parameterizations were developed basing on smaller wind ranges than the ones present in the North Atlantic. After analysing this unexpected fact using the formula multiplied by different wind distribution, we have found two reasons for that.

(d) In the introduction page 2593 lines 22-24, the authors mention that the uncertainty of the flux has been recently discussed in Woolf et al 2015 a and b. But there is no discussion of the results of Woolf in comparison to this study. In general I am missing a proper comparison to prior studies, e.g. Sweeney et al 2007, who found that the gas transfer parametrization leads to a 30% uncertainty in the flux, whereas Landschützer et al 2014 find 37% (also including measurement uncertainty and gridding error), or any other recent study. How do previous studies compare to this one? Does this new estimate fundamentally change our current estimates?

A: This is exactly because the topic of this manuscript supposed to fill something, we believe is a gap, in the generally very comprehensive analysis Woolf at al., 2015a and 2015b papers. We are not coauthors of them and although they are available to us within the ESA project, we are not authorized to present the results which have not yet been published (apart from the fact that the papers do not cover the parameterization choice issue and therefore we cannot directly compare the results of the papers with the present study).

As concerns the comparison with previous papers, we will mention the global results suggested by the reviewer in the revised manuscript but it has to be stressed that the point of the paper is a regional study and we show the global results only for comparison. However, we do agree that it will improve the manuscript if we mention that our global uncertainties due to the choice of gas transfer velocity formula are similar to the previously published estimates. However, direct comparison is impossible here because Sweeney et al. 2007 compared two quadratic parameterizations (his and Wanninkhof 1992) we did not use, choosing instead some more recent ones namely, in the case of quadratic formulas, Ho et al., 2006 and Wanninkhof 2014. The difference of flux between formulas with the same wind power is equal to the difference of the constant coefficient (transfer resistance factor) only so there is no need to integrate them with wind fields to know how much the resulting fluxes will differ. The interesting part is to compare parameterizations with different wind speed dependence (which has been the purpose of the manuscript).

Landschützer et al. 2014 unfortunately showed only the combined uncertainty “stemming from ΔpCO₂ and the transfer velocity, using square root of the sum squares propagation [which] yields an uncertainty of ±0.53 Pg C yr⁻¹” (by the way they also use only one wind
This result also cannot be directly compared with ours. In fact this shows that we presented something which had not been previously shown: the uncertainty coming solely from the transfer velocity formula choice.

Page 2598 line 9: ...vertical lines. The uncertainty in global fluxes is similar to previous estimates (Sweeney et al. 2007, Landschützer et al. 2014) but they cannot be directly compared due to different parameterization choices and methodologies.

(e) Throughout the manuscript, Flux engine is sometimes spelled “Flux Engine” and sometimes “FluxEngine”. In this review I will spell it the way of its first appearance, i.e. Flux Engine.

A: Corrected – ‘FluxEngine’ is the right form

Page 2594 line 11: FluxEngine

Abstract line 2: The authors mention the importance for the anthropogenic budget, but there are some issues with this term. Surface observation based flux estimates, like those calculated in this work do not provide an anthropogenic sink estimate, but a contemporary sink estimate. The anthropogenic sink can only be determined by the pre-industrial state of the ocean, which is estimated to be a source of natural CO\textsubscript{2} to the atmosphere due to river input of carbon.

A: Well, the term is established and there are many papers about anthropogenic part of the carbon budget (we mention some of them later on, such as Le Quéré et al. 2105 or Orr et al 2001). However we agree with the reviewer that it may be controversial and we actually do not need the word “anthropogenic” in the abstract (we never differentiate this part of CO\textsubscript{2} flux in the paper). Therefore we drop it in the revised manuscript replacing it with “global carbon budget”.

Abstract line2: delete ‘anthropogenic CO\textsubscript{2}’ in: ...part of the global carbon CO\textsubscript{2}...

Abstract line 3: “uncertainties in”
Abstract line 4: remove “sink”.
Abstract line 5: “parameterization of THE CO\textsubscript{2} gas transfer velocity”

Introduction, page 2593 line 1: There is a spurious “Le” in the reference list before “Landschützer et al 2014”. Presumably this belongs to “Quéré et al 2015”

Introduction page 2593 lines 5-8: The word “interdecadal” might be not appropriate here, as Schuster and Watson 2007 report results from the mid 1990s to the early 2000s, i.e. only 1 decade. More appropriate would be interannual or intra-decadal.

Methods page 2596 line 1: “ignore the difference” - please provide a reference
Methods page 2596 line 4: change “taken” to “referred to as”

A: All done

Abstract line 3: ...the uncertainties in the net flux...

Abstract line 4: delete ‘sink’ in: ...into the ocean is crucial....

Abstract line 5: ...parametrization for the CO₂ gas transfer velocity.

Introduction page 2593 line 1: ...delete ‘Le’ in” ...Landschützer et al. 2014; Le Quéré et al. 2015), ...

Introduction page 2593 lines 5-8: ...decrease on interannual time scales...

Methods page 2596 line 4: This formulation is often referred to the “bulk parametrization”.

Introduction page 2593 lines 16-19: The authors list a number of potential sources for flux uncertainty, yet later in the manuscript, only one is considered, namely the transfer parametrization. As a reader I would like to know what is the most important of these uncertainties? Is there any literature regarding this topic besides Takahashi 2009?

A: We agree that citing Takahashi in this place was not a good choice (the point was to show the climatology we used, not the literature on uncertainty). We have corrected it now listing Landschützer et al. (2014) and the two submitted Woolf et al. papers (which are discussion of the very topic), deleting the sentence about them at the end of the paragraph.

Methods page 2594: I am not familiar with the Flux Engine software, so a bit more detail would be appreciated (e.g. what reanalysis and model data are included? Are there other wind products available to test? Is it publicly available, and if yes, is there a URL?)

A: FluxEngine is not yet publicly available but should be open sourced by the time the paper is published (the condition was publication of the FluxEngine paper which is already online), possibly within weeks from the moment this response is written. Therefore we added the URL and some additional information

Page 2594 line 8: ...FluxEngine (Shutler et al. 2016) (which is available on the http://www.ifremer.fr/cersat1/exp/oceanflux),

Page 2594 line 9: All calculations were performed using the FluxEngine software, we were only end-users of. The software is scheduled to be opening sourced but at the time of this study we did not have more information about it than is included in the paper describing the tool set (Shutler et al., 2016). This was a conscious decision because, even as we had
access to the toolset developers, we wanted to test it as end users (this is probably the first study using the toolset by authors who had no part in creating it).

Page 2594 line 11: Within the FluxEngine, a suite of reanalyses,...

Page 2594 line 12: ...input to the toolbox that can be use by the scientific community and to aid the interpretation of the....

Page 2594 line 14: ...monthly global gridded flux products with 1ºx1º spatial resolution. The output files contained twelve sets (one set per month) in a NetCDF files. Each data set includes the mean (first order moment), median, standard deviation and the second, third and fourth order moments calculated for each calendar month. There is also information about origin of data inputs as well as results of our calculated. Input data users can chose from all available on the FluxEngine program (perhaps from monthly EO data: rain intensity and event, wind speed and direction, % of ice age and thickness, from monthly model data ECMWF air pressure, whitecapping, from monthly climatology as pCO₂, SST, salinity) and configurable them in a various way. The user needs to choose different components in a calculation process as a way of computed transfer velocity, parametrization to the wind speed calculation, corrections etc. The FluxEngine has been developed not only to support the study of the air-sea flux of CO₂ but also to aid the study of other gases as DMS and N₂O (Land et al. 2013; Shutler et al., 2016).

Methods page 2594 line 21-22: The authors mention that both SOCAT and Takahashi climatology are calculated for 2010. Takahashi et al 2009 is calculated for a reference year 2000 and to the extend of my knowledge, the SOCAT climatology does not have a reference year. Have they been recalculated, and if yes how?

A: This is correct, as concerns the original papers. However the climatologies were calculated within FluxEngine tool set for the same year (the user has a choice of year). A short explanation has been added to the manuscript text.

Page 2594 line 17: ...non El Nino conditions (recalculated to fugacity in the FluxEngine toolset).

Page 2594 line 22: ...2010 within the FluxEngine toolset.

Page 2954 line 25: (Merchant et al. 2012). Both data sets have been preprocessed in the same way using the toolsets of FluxEngine (Shutler et al., 2016).

Methods page 2595 lines 1-3: I assume the wind speed data are at a height of 10 meters above surface. To the extend of my knowledge, all parametrizations used use the 10 meter above surface wind speed. In general, how has the second and third moment of the wind speed been calculated. There is an interesting discussion in Wanninkhof et al. 2013 where the authors caution that it is essential to use <u²> not <u>². Hence some information how (if so) the wind product has been averaged.
A: The definition of U10 was already provided below equations (4-8). There was a small language error (now corrected).

As concerns the calculation of wind speed moments, we cannot be sure before FluxEngine is open sourced (we are end-users ourselves even if insider user-ends and we never saw the source code). However, we assume they are actual moments, not powers of the mean value because this is how they are described in Shutler et al. 2016 (we now paraphrased the fragment of the paper to beef up the toolset description in the revised manuscript as described above).

Page 2596 line 17: ...wind speed 10 m above the sea surface.

Methods page 2595 lines 8-10: I was wondering what the motivation was to separate North Atlantic and Arctic at 64N? Furthermore, please state how far north the Arctic estimate extents, and how you have dealt with ice covered areas. From Figure 1 it seems like the surface area changes from season to season - this is relevant information for your final flux estimate that is currently missing in the text.

A: The 64N choice was rather arbitrary. The motives were to cover all the areas of the annual Arctic cruise of the IOPAN ship R/V Oceania for later study. All calculation and corrections were made in FluxEngine toolbox within FluxEngine software. The algorithm of which “pixels” to include in every month is based on percentage ice cover for each month (Shutler et al. 2016). However the air-sea flux on sea-ice covered area is zero anyway and therefore we believe this is the correct approach. From the same reasons we believe that plotting the ice masks for each month is not really relevant for the purposes of the paper.

Page 2594 line 4: ...and the European Arctic. The region was chosen due to being the area of many studies some of the parameterizations were based on and also as a region with wind distribution tilted to higher winds than the global average to test the effect of stronger winds on the difference of net fluxes calculated using the published gas transfer velocity formulas.

Methods page 2596 lines 25-26: Please explain in more detail what “wind driven and radar backscatter driven” mean.

A: Wind driven and radar backscatter driven are versions of algorithm using either U10 or directly the wave slopes from scatterometers as described in Goddijn-Murphy et al., 2012. We decided not to copy the whole explanation from the paper but just add similar explanation as the one above and to reference the paper.

Page 2596 line 25-26: wind driven (using the U10 wind fields) and radar backscatter driven (using mean wave square slope) as described in Goddijn-Murphy et al. (2012).

Results page 2597 and Figure 1 and 2: I do not understand why there are gaps (white areas) in the Takahashi et al based pCO2 and flux estimate in the North Atlantic e.g. in the center of the basin between 40-50N? I could not identify such gaps in the Takahashi
et al 2009 publication. Do they result from k and if yes, then why? Please explain.

A: This is another question about FluxEngine which is not easy to answer not being its authors and not having access to the source code. Some of the gaps are obviously caused by the transition from the 5ºx5º grid Takahashi used to the FluxEngine 1ºx1º grid and the ice and shore masks (Rockall Island is a visible example). This is mentioned in Shutler et al. 2016. However we do not know the reasons for every missing pixel in every month. We added explanation in the captions of Figures 1-4.

Page 2608-2611 in Figures 1-4: (autumn). The gaps (white areas) are due to missing data, land and ice masks and interpolation algorithms of the FluxEngine software.

Discussion page 2599 lines 9-10: please quantify what “within the experimental uncertainty” means.

A: This is actually what the authors of the three parameterizations (Ho, Nightingale and Wanninkhof) said during the Kiel SOLAS session on the very subject (described in the next sentences). We wrote the paragraph just after the session so it is as close to actual quote from the authors as possible. The meaning is experimental data we have in hand cannot distinguish between the three. The report from the session (available online http://goo.gl/TrMQkg) supports our memory stating that:

For gas transfer of CO2 over the oceans the relationships proposed in Nightingale et al. (2000), Sweeney et al. (2007), Ho et al. (2006), and Wanninkhof et al. (2009) are recommended. They are very similar and fall within the overall uncertainty of DT measurements.

We did not use Sweeney et al 2007 (as mentioned above) therefore we mention only the other three. We also cite a newer Wanninkhof (2014) paper but the formula it uses can be really found to the Wanninkhof et al 2009. However it is hidden among many other formulas so we believe the 2014 citations is clearer to the reader.

The “our” in the manuscript sentence was supposed to refer to the scientific community, not the manuscript authors. This has been rewritten to make it clearer and a citation of the session report by Nightingale (2015) has been added.

Discussion page 2601 line 4: “Takahashi and SOCAT pCO2 climatologies”. SOCAT reports fCO2 How has this been converted to pCO2? Via the Flux Engine software?

A: Yes, the data from SOCAT website were pre-processed into the format required by the FluxEngine software. Actually it works the other way: FluxEngine recalculates pCO2 to fugacities (we mention its use of fugacity in the new paragraph on FluxEngine). A sentence about this pCO2 → fugacity recalculation has also been added to the manuscript.

Figure comments:
Figure 1,2,3 and 4: I am wondering where the data gaps come from? Also, please increase the font of the plot, as numbers, e.g. from the colorbar are difficult to read.

A: We added information about gaps to the describe under figures (see also above) as well as change the scale (put big one for all print in one figure) for better view. Unfortunately we cannot change the font of the numbers (software problem). We hope that in the print paper the scale and maps will be bigger that in OS Discussion paper.

Page 2608-2611 in Figures 1-4...(autumn). The gaps (white areas) are due to missing data, land and ice masks and interpolation algorithms of the FluxEngine software.

Figures 1-3: The size of figures has been changed as well as size of plots has been changed.

Page 2608 Figure 1: Seasonal and annual mean air-sea of CO₂ (mg C m⁻² day⁻¹)

Page 2611 Figure 4: Differences maps for the air-sea CO₂ fluxes (mg C m⁻² day⁻¹) in the North Atlantic

Figure 5,6,7 and 8: There is contradicting information in the caption compared to the y-axis or the figure title. In the caption, the authors report units of g/m²/day whereas on the y-axis/title they report Tg. Which one is correct? In case Tg is correct, should it not be Tg/yr?

A: Thanks for spotting this. We have corrected this in the captions (to Tg/year)

Page 2612 Figure 5 and page 2615 Figure 8 ...of CO₂ (Tg/month)...

Page 2613 Figure 6 and page 2614 Figure 7: ...(Tg/year)...

Figures 5 and 8: Units has been change [Tg/month]

Figures 6: Unites has been change [Tg/year]

Figure 6: please increase the font to make it better readable.

See above
Figure 6 and 7: It is remarkable that without a few exceptions, the majority of the parametrizations are within the standard deviation of all parametrizations. Using the standard deviation as an uncertainty criterion, this would suggest that you based your statement page 2599 lines 9-10 on this figure. Is that correct? If so, please state this more explicitly.

A: This is the standard deviation (SD) of the values of fluxes calculated with different parameterizations, a simple value of the spread of the results (variability). If the results obeyed normal distribution, 2/3 of them would be, by definition, within one standard deviation from the average. They obviously are not (the sample is small) but still, the fact that the majority of results are within one SD from the average results directly from the definition of standard deviation.

We show the SD value exactly as a measure of variability of all the results. We do not place too much stress on the value as it is calculated from both the parameterizations believed (see the discussion of the Kiel 2015 SOLAS session on the subject) to be close to the best experimental results, and formulas which are not (but still are found in the literature and sometimes used). In the discussion we tried to differentiate the two. The source of the p. 2999, l. 9-10 statement was the very Discussion Session. We added information on this (see above), including the link to its minutes (Report by Phil Nightingale) where the statement is given explicitly as one of the session recommendations.

Figure 8: Again, it is important to understand for the reader how the SOCAT climatology has been created. If it is a climatology from the cruise tracks only as provided on the SOCAT website, than it is not directly comparable to the Takahashi climatology. If it is a climatology created by a gap filling method, then please explicitly explain how it has been created. Otherwise figure 8 is more misleading than helpful.

A: We added a statement that the SOCAT data were interpolated using the FluxEngine toolset (actually in two places: in the Methods and Results).

We presented the results at two conferences (EGU and SOLAS) and this difference between the Takahashi and SOCAT results, especially in the Arctic where they have inverse seasonal variability, was commented by many experts in the field as one of the most interesting results. We have to add that this result was also shown as a short presentation at a special SOCAT/SOCOM workshop (“Surface Ocean CO2 Atlas & Surface Ocean pCO2 Mapping Intercomparison”) one day before the Kiel conference, and the discussion showed it was deemed an interesting and important result. This is exactly why we felt obliged to be including it in the manuscript.

The question raised by the figure is which data set (Takahashi vs. SOCAT) is right. As much as we believe SOCAT (as the more complete one) is more accurate, as the one using more Arctic data, we have no way of concluding this from just comparing the resulting fluxes. Only additional experimental data can settle this, and we stated as much in the manuscript (in the last sentence of the conclusions).
Comments from referee#2

My biggest concern about this manuscript is that I am not sure if it makes a very substantial contribution to our knowledge. While I agree it is important to understand how we make our flux calculations (e.g. limitation of the gas transfer coefficient) and to use large datasets with up-to-date information, I do not think this stage of the paper offers any deep insight.

A: This is a very general remark. We answer it at the top of this document and answering several detailed comments by Reviewer #1. We believe we gave several arguments for the importance of this kind of study both for end-users of k parametrization and to the researchers working on improving them (we belong to the latter).

In addition, the authors themselves say that other scientists have determined the main conclusion of this paper, but simply have not written it down in equation form in published manuscript (Pg. 2600, line 21).

A: Not exactly. When starting the work, we had no idea that North Atlantic, a region with winds higher than average, will have smaller differences of the net fluxes than the global ocean. We actually expected the inverse. We were surprised with the result and discussed that with several experts, when presenting the results at three different meetings. Only one of them (Andy Watson) was not surprised and offered the constant direction of the flux in all seasons as a possible explanation stating he has seen it in the data. However, he could not give any citation on that (we asked). We confirmed his intuition with calculations (and cite his input as a “private communication”) and we also found a second, possibly more important, reason for the closeness of quadratic and cubic parameterizations in the North Atlantic (the fact that they intersect at wind levels typical for the region). We are highly confident that neither of fact that the parameterizations cause less spread in flux results in the North Atlantic not any reasons for that were never published (we really did search and ask around). We cannot agree that something is unpublishable because someone had an explanation for part of our unpublished results after seeing them at a meeting where the results were presented (Andy Watson was only one of many persons we presented the results to at different meetings and the only one who offered an explanation, even if a partial one). That would mean that the results for this phenomenon would be, at the same time, unpublished and unpublishable, which does not seem right.

We changed the wording to make it clearer that the phenomenon has been neither known within the community (the one known exception is explicitly mentioned and thanked for with the citation) nor previously published to the best knowledge of multiple experts we talked to.

Page 2600 line 19-20: quadratic parametrizations add to each other due to simultaneous changes in in the sign of both fluxes itself

Page 2600 line 20: delete ‘recognized previously’
Page 2600 line 20: The effect of seasonality has been suggested to us basing on available data (A. Watson-personal communication)...

Page 2600 line 22: arithmetic formulas, or even describing it explicitly.

Finally, the idea of uncertainty here is not exactly in relation to obtainin more accurate fluxes, since the measure of uncertainty is comparison of calculated fluxes using one or the other potentially flawed parameterization. Even if the parameterizations give the same value, we are still not sure if the calculated fluxes are accurate (both because of the parameterizations and the concentration gradients that go into the calculations).

A: The purpose of the paper is not to tell the people who use \(k \) formulas which parameterization is the best. One can need experimental data for it (dual-tracer experiments etc.), not comparison to resultant net fluxes. By the way, this is the reason why the SOLAS conference discussion session conclusions mentioned in the reply to Reviewer 1 (and also below) are important as they anchor our study with recent results of dual-tracer experiments. No, the purpose of the paper is to determine how much the flux results will differ, depending on which formula is chosen. It is an important part of uncertainty which previously has been rarely discussed explicitly (usually it has been lumped with other sources and only a total uncertainty was given).

On the other hand, the results we provide should also be useful to the authors of the very parameterizations as a “sanity check”. For them, it is an additional tool to determine how the new formula fares when faced with global data. We can attest to that by relating how much interest we got from some of them present at the meetings where we presented the data. We are also aware of at least one new \(k \) parameterization, created basing solely on theoretical arguments (already submitted) which would be easily shown by analysis such as ours to be a massive outlier in global and regional net fluxes (assuming the formula survives the peer review process – we have no rights to publish it before its authors and therefore we omitted it). We believe it is an additional argument for the need of studies such as the present one.

line 8 in abstract should read for example instead of or example

A: Thanks (it was actually “or comparison”). We changed this and added some additional corrections: We used a recently developed software tool, FluxEngine, in order to estimate monthly net carbon air-sea flux for the extratropical North Atlantic, the European Arctic, as well as global values (for comparison) using several available parameterizations of the gas transfer velocity for different dependence on wind speed, both quadratic and cubic.

Page 2592 line 6:FluxEngine, in order to estimate monthly net carbon
the European Arctic...global values (for comparison)

velocity for different dependence on wind speed, both quadratic and cubic

uncertainty caused by combination...

line 11 on pg. 2594 should be suite instead of suit
A: Thanks for noticing it. It has been corrected.

Within the FluxEngine, a suite of reanalyzes,...

Pg. 2592, line 25 – refers to Talley, 2013 for NADW formation, but this phenomenon has been known for much longer. Is this the best reference to use?
A: The purpose of this quote (supporting the statement “a region where a large part of ocean deep waters are formed”) was to show a recent review paper which gives the newest estimates of the volumes of deep water formation, not to place a claim of who first recognized the mechanism (which would be Wally Broecker if one person were to be named but actually it was a long process). We believe that neither going into more details on overturning circulation nor relating the history of its discovery is within the scope of the manuscript.

Pg. 2592 line 25: ... (see Talley (2013) for a recent review).

Pg. 2599, lines 10-13 – I am not sure this info about the discussion session at SOLAS adds anything to the manuscript. I think it should be taken out.
A: Actually, two comments by Reviewer #1 made it necessary to add more text about it (and a link to the session report). This session, convened by the leading authors of the very parameterizations used in this study, gives a strong support to one of the statements in the manuscript. The very fact that it was convened, in our opinion, is also a strong sign that the subject of this manuscript is a topic interesting for many researchers working in the field.

Page 2599 line 9: delete “to our knowledge” in: This would confirm that at present, the parametrizations are...

Page 2599 line 10-13: delete ‘results of a discussion session convened by the’ and ‘("Relationship between wind speed and gas exchange over the ocean: which parametrizations should I use?")’ in: This view was supported by the leading authors of the three parameterizations during a discussion session convened by them (Nightingale, 2015) during SOLAS Opean Science Conference...

Figure 7 – is this figure really necessary?
I am not sure why it adds something more than Figure 6. Figure 8 – I am missing a more detailed discussion about why there is this inverse in the seasonality. This could lend substance to this paper.

A: We understand the question as one about Figure 8, not 7, as the one where inverse of seasonality is shown. This issue was also raised by Reviewer #1 (see the detailed answer discussing the question above). In short, the feedback from presenting this figure at two major conferences and a special SOCAT workshop were very encouraging.

List of additional changes to the manuscript:

Title: ...the European Arctic

Page 2593 line 20-24: In this work we chose to analyze various empirical parametrization using wind speed. Although the North Atlantic is one of the regions of the world ocean best covered by CO₂ fugacity measurements (Watson et al. 2011), the Arctic seas coverage is much poorer, especially in winter (Schuster et al. 2013).

Page 2593 line 22: delete: ‘The uncertainties in the contemporary global air sea flux of carbon dioxide have been discussed in two recent papers (Woolf et al. 2015a, Woolf et al. 2015b)’

Page 2597 line 28: ...and the European Arctic

Page 2598 line 5: ... fluxes for the North Atlantic and the European Arctic...

Page 2598 line 13: In the case of the North Atlantic, using the “quadratic”...

Page 2598 line 24: ...version 1.5 and 2.0, interpolated to create a climatology using the FluxEngine toolset (Shutler et al. 2016).

Page 2598 line 29: ...In the case of the European Arctic...

Page 2600 line 1: delete ‘We see two” in: ...reasons for that.

Page 2600 line 12: ...(usually strong winds in winter and weak summer),

Page 2600 line 19-20: quadratic parametrizations add to each other due to simultaneous changes in in the sign of both fluxes itself

Page 2600 line 20: delete ‘recognized previously”

Page 2600 line 20: The effect of seasonality has been suggested to us basing on available data (A. Watson-personal communication)...

Page 2600 line 22: arithmetic formulas, or even describing it explicitly.

Additional changes to the literature list:

Page 2604 line 14: Nightingale, P. D., Relationship between wind speed and gas exchange over the ocean: which parameterisation should I use?, Raport from Discussion Session at SOLAS Open Science conference in Kiel, http://goo.gl/TrMQkg, 2015.

Page 2605 28: http://dx.doi.org/10.1175/JTECH-D-14-00204.1, 2016 and delete ‘submitted’