Interactive comment on “The effects of climate change on persistent organic pollutants (POPs) in the North Sea” by K. O’Driscoll et al.

Anonymous Referee #2

Received and published: 9 December 2013

General comments:

The authors address the effects of global climate change on POPs on the North Sea. They use two highly resolved models for ocean circulation and chemical fate, respectively, following an approach that has previously been used and validated in the literature. The topic is of high relevance and compatible with current discussions in the literature. Unfortunately, this literature is not cited here at all, neither there is a discussion of how the results fit into context with recent studies on climate change and POPs.

My biggest concern about the methodology is that the authors model the effects of a global process (climate change) on a regional scale (the North Sea), without considering the forcings that act from outside on the regional system, such as the long-range.

C562
transport of air pollutants, change in primary and secondary emissions on a global level, and other global processes such as sea-ice retreat that will have a global effect mediated by long range transport. Rather, the authors limit their analysis to forcings that result from regional changes in response to global change. In this way, the analysis is reduced to a process study, which also is interesting, but which is not informative in terms of the impact of global climate change on changing POP concentrations in the regional ecosystem of interest. Thus, also the manuscript title becomes misleading.

A further major drawback of the paper is that the authors do not discuss their results in the context of uncertainty. For example, they mention effects of a few percent of change, without acknowledging that this effect is quite small in comparison to input-parameter uncertainty.

My suggestion would be to not publish the article in the way it is now. Either it should be rewritten to make clear that regional and local processes are studied, not so much a global effect, or the global forcings stated above should be included in the modeling, which would be a major revision.

Specific comments:

In their literature review, the authors fail to recognize the recent studies on the climate change effect on POPs. This would be also very beneficial for putting their own research into context. Some of the works that I would have liked to see referenced here and linked to the presented results are:


Page 1533, line 8-15: here, the authors focus on interannual variability in the present and the future model runs, as they also do in other parts of the manuscript (page 1534, line 2-5; page 1536, line 1-9). It seems a bit pointless to me to discuss high and low values in specific years, if this is a result of re-using the same input parameterization for atmospheric concentrations and river input for future model runs. This way, the present day fluctuation is only propagated to the future, and is no real effect of interest in the context of climate change.

Page 1534, line 16-17: here the authors address increased volatilization as a result of storms. This is an interesting feature, given that climate models forecast an increased frequency of storms. I haven’t seen this aspect discussed in the literature before, so maybe this is a good topic to focus on. Caution should be applied, however, due to the high uncertainties of climate model forecasts with regard to storm frequencies.

Page 1536, line 11-20: here the authors describe qualitatively the effects of climate change on POP concentrations. In their wording, they use several times very vague descriptors (“diminishes somewhat”, line 11; “the small increase”, line 18; etc.). It would be desirable to be more quantitative here, and state in comparison to what the changes are small. Are they small in comparison to interannual variation? Or compared to input-parameter uncertainty? (See also my general comment on uncertainty).

Page 1538, line 3-14: here the authors explain the drop of gamma-HCH concentrations in front of the British coast. They argue with decreasing concentrations in the
atmosphere and in the river influx previous to 2005. This is highly confusing to me, given that the authors state earlier in their paper (page 1530, line 21 and following) that they used the same atmospheric and riverine concentrations of the year 2005 as initial condition for every model run. It rather appears to me that we are observing a temperature effect (see also figure 3, panels a and b).

Page 1540, summary and conclusions section: This section is very repetitive with the results section. I am missing some discussion on the results in the context with previous research, the significance of these results for the debate on climate change and chemicals, and a discussion on the uncertainties inherent to these results.

Technical corrections:

Page 1537, line 11: It is misleading to say that degradation decreases, since degradation increases with temperature. The authors might want to clarify this by referring to “degradation flux”, instead.

Page 1549, caption to figure 2: indicate explicitly what is shown in panel “c” and in panel “d”

Page 1550, panel 3 of figure 4: If you reduce the range of the y-axis to {0, 0.8}, the data would be better visible (less overlay).

Page 1554, caption to figure 8: This is not a histogram!!!! It’s a barplot! You actually don’t have to state what it is, rather what it shows!

Page 1555, figure 9: this figure might be more informative if plotted as relative change instead of as difference of concentrations. In this way the relative importance of the effect could be shown.

Interactive comment on Ocean Sci. Discuss., 10, 1525, 2013.