Journal cover Journal topic
Ocean Science An interactive open-access journal of the European Geosciences Union

Journal metrics

  • IF value: 2.821 IF 2.821
  • IF 5-year<br/> value: 3.048 IF 5-year
    3.048
  • CiteScore<br/> value: 2.90 CiteScore
    2.90
  • SNIP value: 1.191 SNIP 1.191
  • SJR value: 1.885 SJR 1.885
  • IPP value: 2.589 IPP 2.589
  • h5-index value: 25 h5-index 25
https://doi.org/10.5194/osd-2-473-2005
© Author(s) 2005. This work is licensed under
the Creative Commons Attribution-NonCommercial-ShareAlike 2.5 License.
 
25 Nov 2005
Review status
A revision of this discussion paper for further review has not been submitted.
The wind-driven overturning circulation of the World Ocean
K. Döös Department of Meteorology, Stockholm University, 10691 Stockholm, Sweden
Abstract. The wind driven aspects of the meridional overturning circulation of the world ocean and the Conveyor Belt is studied making use of a simple analytical model. The model consists of three reduced gravity layers with an inviscid Sverdrupian interior and a western boundary layer. The net north-south exchange is made possible by setting appropriate western boundary conditions, so that most of the transport is confined to the western boundary layer, while the interior is the Sverdrupian solution to the wind stress. The flow across the equator is made possible by the change of potential vorticity by the Rayleigh friction in the western boundary layer, which is sufficient to permit water and the Conveyor Belt to cross the equator. The cross-equatorial flow is driven by a weak meridional pressure gradient in opposite direction in the two layers on the equator at the western boundary.

The model is applied to the World Ocean with a realistic wind stress. The amplitude of the Conveyor Belt is set by the northward Ekman transport in the Southern Ocean and the outcropping latitude of the NADW. It is in this way possible to set the amount of NADW that is pumped up from the deep ocean and driven northward by the wind and converted in the surface layer into less dense water by choosing the outcropping latitude and the depth of the layers at the western boundary. The model has proved to be able to simulate many of the key features of the Conveyor Belt and the meridional overturning cells of the World Ocean. This despite that there is no deep ocan mixing and that the water mass conversions in the this model are made at the surface.


Citation: Döös, K.: The wind-driven overturning circulation of the World Ocean, Ocean Sci. Discuss., 2, 473-505, https://doi.org/10.5194/osd-2-473-2005, 2005.
K. Döös
Interactive discussionStatus: closed (peer review stopped)
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version      Supplement - Supplement
 
RC S229: 'Referee Comment', Anonymous Referee #1, 16 Dec 2005 Printer-friendly Version 
 
RC S232: 'Referee Comment', Anonymous Referee #2, 22 Dec 2005 Printer-friendly Version 
K. Döös
K. Döös

Viewed

Total article views: 607 (including HTML, PDF, and XML)

HTML PDF XML Total BibTeX EndNote
269 302 36 607 37 36

Views and downloads (calculated since 01 Feb 2013)

Cumulative views and downloads (calculated since 01 Feb 2013)

Saved

Discussed

Latest update: 29 Jun 2017
Publications Copernicus
Download
Share